REPORT N<sup>O</sup> 002

## **COVENTRY LOCAL PLAN**

TRANSPORT MODELLING REPORT

CONFIDENTIAL

DECEMBER 2016



## COVENTRY LOCAL PLAN

### MODELLING REPORT

**Coventry City Council** 

### Report (version) Confidential

Project no: 70001991 Date: December 2016

WSP | Parsons Brinckerhoff One Queens Drive Birmingham B5 4PJ

Tel: +44 (0)121 352 4700 Fax: +44 (0)121 352 4701 www.wsp-pb.com



## QUALITY MANAGEMENT

| ISSUE/REVISION | FIRST ISSUE                                           | REVISION 1                                                                                                                                                                  | REVISION 2                                                                                                                                                                  |
|----------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Remarks        | DRAFT for review                                      | Final for CCC Review                                                                                                                                                        | Final                                                                                                                                                                       |
| Date           | 18 <sup>th</sup> November 2016                        | 1st December 2016                                                                                                                                                           | 7 <sup>th</sup> December 2016                                                                                                                                               |
| Prepared by    | Gaelle Samaha<br>Amina Guecioueur<br>Christine Palmer | Gaelle Samaha Amina Guecioueur Christine Palmer                                                                                                                             | Gaelle Samaha<br>Amina Guecioueur<br>Christine Palmer                                                                                                                       |
| Signature      |                                                       |                                                                                                                                                                             | Life.  Affalmer                                                                                                                                                             |
| Checked by     |                                                       | Simon Statham                                                                                                                                                               | Simon Statham                                                                                                                                                               |
| Signature      |                                                       |                                                                                                                                                                             | State                                                                                                                                                                       |
| Authorised by  |                                                       | Simon Statham                                                                                                                                                               | Simon Statham                                                                                                                                                               |
| Signature      |                                                       |                                                                                                                                                                             | State                                                                                                                                                                       |
| Project number |                                                       | 70001991                                                                                                                                                                    | 70001991                                                                                                                                                                    |
| Report number  |                                                       | 1                                                                                                                                                                           | 1                                                                                                                                                                           |
| File reference |                                                       | \\ser01brm1uk\Projects\70<br>001991 - CSW WMHA<br>Coventry Strategic<br>Transport Modelling\C<br>Documents\Reports\Coven<br>try Local Plan\2016 Nov<br>Coventry Local Plan\ | \\ser01brm1uk\Projects\7<br>0001991 - CSW WMHA<br>Coventry Strategic<br>Transport Modelling\C<br>Documents\Reports\Cove<br>ntry Local Plan\2016 Nov<br>Coventry Local Plan\ |

# TABLE OF CONTENTS

| EXECU | FIVE SUMMARY                                | 1   |
|-------|---------------------------------------------|-----|
| 1     | INTRODUCTION                                | 5   |
| 2     | OVERVIEW OF CASM                            | 7   |
| 3     | COVENTRY LOCAL PLAN DEVELOPMENT ASSUMPTIONS | 9   |
| 4     | HIGHWAY AND PUBLIC TRANSPORT ASSUMPTIONS    | 16  |
| 5     | LOCAL PLAN SCENARIO 1 RESULTS               | 22  |
| 6     | LOCAL PLAN SCENARIO 2 RESULTS               | 45  |
| 7     | LOCAL PLAN SCENARIO 3 RESULTS               | 59  |
| 8     | LOCAL PLAN SCENARIO 4 RESULTS               | 76  |
| 9     | SUMMARY OF LOCAL PLAN SCENARIOS             | 91  |
| 10    | KERESLEY LINK ROAD ASSESSMENT               | 94  |
| 11    | CASM MODEL REGISTRY                         | 123 |

## TABLES

| TABLE 1.1: | CASM LOCAL PLAN SCENARIOS                                                                                            |
|------------|----------------------------------------------------------------------------------------------------------------------|
| TABLE 3.1: | RESIDENTIAL DEVELOPMENTS CCC LOCAL AUTHORITY                                                                         |
| TABLE 3.2: | RESIDENTIAL DEVELOPMENTS WITHIN NEIGHBOURING AUTHORITIES1                                                            |
| TABLE 3.3: | EMPLOYMENT DEVELOPMENTS WITHIN NEIGHBOURING AUTHORITIES1                                                             |
| TABLE 3.4  | SCHOOL ASSUMPTIONS1                                                                                                  |
| TABLE 3.5: | LOCAL PLAN SCENARIOS1                                                                                                |
| TABLE 4.1: | HIGHWAY NETWORK SCHEMES1                                                                                             |
| TABLE 4.2: | PUBLIC TRANSPORT SCHEMES1                                                                                            |
| TABLE 5.1: | CHANGES IN TOTAL POPULATION IN THE COVENTRY LOCAL AUTHORITY BETWEEN 2034 LOCAL PLAN SCENARIO 1 AND 2013 BASE YEAR2   |
| TABLE 5.2: | CHANGES IN TOTAL TRIPS BY PURPOSE IN COVENTRY LOCAL AUTHORITY BETWEEN 2034 LOCAL PLAN SCENARIO 1 AND 2013 BASE YEAR2 |
| TABLE 5.3: | TRIP DISTRIBUTION OF CAR TRIPS TRAVELLING FROM COVENTRY3                                                             |
| TABLE 5.4: | TRIP DISTRIBUTION OF CAR TRIPS TRAVELLING TO COVENTRY3                                                               |
| TABLE 5.5: | TRIP DISTRIBUTION OF CAR TRIPS TRAVELLING FROM SPECIFIC COVENTRY AREAS3                                              |
| TABLE 5.6: | TRIP DISTRIBUTION OF CAR TRIPS TRAVELLING TO SPECIFIC COVENTRY AREAS                                                 |
| TABLE 5.7: | HIGHWAY NETWORK STATISTICS 2034 SCENARIO 1 VS 2013<br>BASE YEAR3                                                     |
| TABLE 6.1: | COVENTRY LOCAL AUTHORITY HIGHWAY NETWORK STATISTICS SCENARIO 1 VS SCENARIO 25                                        |
| TABLE 6.2: | KERESLEY AREA HIGHWAY NETWORK STATISTICS SCENARIO 1 VS SCENARIO 25                                                   |
| TABLE 6.3: | VOLUME/ CAPACITY SCENARIO 1 VS SCENARIO 25                                                                           |
| TABLE 7.1: | EASTERN GREEN AREA HIGHWAY NETWORK STATISTICS SCENARIO 1 VS SCENARIO 36                                              |
| TABLE 7.2: | VOLUME/ CAPACITY SCENARIO 1 VS SCENARIO 3 EASTERN GREEN6                                                             |
| TABLE 8.1: | COVENTRY LOCAL AUTHORITY HIGHWAY NETWORK STATISTICS SCENARIO 1 VS SCENARIO 48                                        |
| TABLE 8.2: | CROMWELL LANE LOCAL AREA HIGHWAY NETWORK STATISTICS SCENARIO 1 VS SCENARIO 48                                        |
| TABLE 8.3: | CROMWELL LANE JUNCTION RFC PERFORMANCE 2016 PRIORITY JUNCTIONS8                                                      |
| TABLE 8.4: | CROMWELL LANE JUNCTION PERFORMANCE 2016 SIGNALISED JUNCTION8                                                         |
| TABLE 8.5: | CROMWELL LANE FUTURE YEAR JUNCTION PERFORMANCE PRIORITY JUNCTIONS8                                                   |
| TABLE 8.6: | CROMWELL LANE JUNCTION FUTURE YEAR PERFORMANCE SIGNALISED JUNCTION8                                                  |

| TABLE 10.1:  | SPILT OF KERESLEY HOUSES                       | 95      |
|--------------|------------------------------------------------|---------|
| TABLE 10.2:  | KERESLEY TRIP RATE                             | 96      |
| TABLE 10.3:  | KERESLEY TRIP GENERATION                       | 96      |
| TABLE 10.4:  | KERESLEY HIGHWAY NETWORK STATISTICS AM PEAK.   | 102     |
| TABLE 10.5:  | KERESLEY HIGHWAY NETWORK STATISTICS PM PEAK.   | 102     |
| TABLE 10.6:  | AM JOURNEY TIMES                               | 105     |
| TABLE 10.7:  | PM JOURNEY TIME                                | 106     |
| TABLE 10.8:  | AM PEAK KERESLEY TRAFFIC FLOW CHANGES (VEHICL  | .ES)107 |
| TABLE 10.9:  | PM PEAK KERESLEY TRAFFIC FLOW CHANGES          | 108     |
| TABLE 10.10: | KERESLEY HIGHWAY NETWORK STATISTICS AM PEAK.   | 113     |
| TABLE 10.11: | KERESLEY HIGHWAY NETWORK STATISTICS PM PEAK.   | 113     |
| TABLE 10.12: | AM KERESLEY JOURNEY TIMES                      | 115     |
| TABLE 10.13: | PM KERESLEY JOURNEY TIME                       | 115     |
| TABLE 10.14: | AM PEAK KERESLEY TRAFFIC FLOW CHANGES (VEHICL  | ES)116  |
| TABLE 10.15: | PM PEAK KERESLEY TRAFFIC FLOW CHANGES          | 118     |
| TABLE 10.16: | POTENTIAL TRAFFIC DEMAND FOR THE KERESLEY LINK |         |
|              | ROAD                                           | 121     |

## FIGURES

| FIGURE 2.1: | COVENTRY AREA STRATEGIC MODEL AREA7                                                                                     |
|-------------|-------------------------------------------------------------------------------------------------------------------------|
| FIGURE 3.1: | LOCATION OF RESIDENTIAL DEVELOPMENTS IN COVENTRY10                                                                      |
| FIGURE 3.2: | LOCATION OF RESIDENTIAL WITHIN WARWICK DISTRICT COUNCIL11                                                               |
| FIGURE 3.3: | LOCATION OF EMPLOYMENT DEVELOPMENTS IN COVENTRY12                                                                       |
| FIGURE 3.4: | LOCATION OF EMPLOYMENT DEVELOPMENTS WITHIN NEIGHBOURING AUTHORITIES13                                                   |
| FIGURE 3.5: | LOCATION OF PROPOSED SCHOOLS14                                                                                          |
| FIGURE 4.1: | SCENARIO 1 - HIGHWAY INFRASTRUCTURE - KERESLEY18                                                                        |
| FIGURE 4.2: | SCENARIO 2 - HIGHWAY INFRASTRUCTURE KERESLEY19                                                                          |
| FIGURE 4.3: | SCENARIO 1 - HIGHWAY INFRASTRUCTURE EASTERN GREEN20                                                                     |
| FIGURE 4.4: | SCENARIO 3 - HIGHWAY INFRASTRUCTURE EASTERN GREEN21                                                                     |
| FIGURE 5.1: | CHANGES IN TOTAL POPULATION IN COVENTRY LOCAL AUTHORITY AREA BETWEEN 2034 LOCAL PLAN SCENARIO 1 AND 2013 BASE YEAR23    |
| FIGURE 5.2: | CHANGES IN TOTAL EMPLOYMENT IN COVENTRY LOCAL AUTHORITY BETWEEN 2034 LOCAL PLAN SCENARIO 1 AND 2013 BASE YEAR25         |
| FIGURE 5.3: | CHANGES IN SCHOOLS IN COVENTRY LOCAL AUTHORITY AREA BETWEEN 2034 LOCAL PLAN SCENARIO 1 AND 2013 BASE YEAR26             |
| FIGURE 5.4: | CHANGES IN TOTAL TRIP PRODUCTIONS IN COVENTRY LOCAL AUTHORITY BETWEEN 2034 LOCAL PLAN SCENARIO 1 AND THE 2013 BASE YEAR |

| FIGURE 5.5:  | CHANGES IN TOTAL TRIPS BY MODE IN COVENTRY LOCAL<br>AUTHORITY BETWEEN 2034 LOCAL PLAN SCENARIO 1 AND<br>2013 BASE YEAR (PERSON TRIPS PER 12 HOUR WEEKDAY) 29 |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FIGURE 5.6:  | COVENTRY AREAS FOR TRIP DISTRIBUTION30                                                                                                                       |
| FIGURE 5.7:  | COVENTRY LOCAL AUTHORITY AREAS FOR TRIP DISTRIBUTION32                                                                                                       |
| FIGURE 5.8:  | COVENTRY LOCAL AUTHORITY AREA HIGHWAY NETWORK STATISTICS AREA OF COVERAGE35                                                                                  |
| FIGURE 5.9:  | AM PEAK 2013 BASE YEAR V/C RATIO PLOT36                                                                                                                      |
| FIGURE 5.10: | AM PEAK 2034 SCENARIO 1 V/C RATIO PLOT36                                                                                                                     |
| FIGURE 5.11: | AM PEAK 2013 BASE YEAR VS SCENARIO 1 V/C RATIO DIFFERENCE PLOT37                                                                                             |
| FIGURE 5.12: | PM PEAK 2013 BASE YEAR V/C RATIO PLOT38                                                                                                                      |
| FIGURE 5.13: | PM PEAK 2034 SCENARIO 1 V/C RATIO PLOT38                                                                                                                     |
| FIGURE 5.14: | PM PEAK 2013 BASE YEAR VS SCENARIO 1 V/C RATIO DIFFERENCE PLOT39                                                                                             |
| FIGURE 5.15: | AM PEAK 2013 YEAR AVERAGE JUNCTION DELAY40                                                                                                                   |
| FIGURE 5.16: | AM PEAK 2034 SCENARIO 1 AVERAGE JUNCTION DELAY41                                                                                                             |
| FIGURE 5.17: | AM PEAK 2034 SCENARIO 1 – 2013 BASE YEAR AVERAGE JUNCTION DELAY41                                                                                            |
| FIGURE 5.18: | PM PEAK BASE YEAR AVERAGE JUNCTION DELAY42                                                                                                                   |
| FIGURE 5.19: | PM PEAK 2034 SCENARIO 1 AVERAGE JUNCTION DELAY43                                                                                                             |
| FIGURE 5.20: | PM PEAK 2034 SCENARIO 1 – 2013 BASE YEAR AVERAGE JUNCTION DELAY43                                                                                            |
| FIGURE 6.1:  | CHANGES IN POPULATION WITHIN COVENTRY LOCAL AUTHORITY BETWEEN 2034 LOCAL PLAN SCENARIO 2 AND SCENARIO 146                                                    |
| FIGURE 6.2:  | CHANGES IN SCHOOLS BY EDUCATION LEVEL IN COVENTRY LOCAL AUTHORITY BETWEEN 2034 LOCAL PLAN SCENARIO 2 AND SCENARIO 147                                        |
| FIGURE 6.3:  | CHANGES IN TOTAL TRIP GENERATIONS IN COVENTRY LOCAL AUTHORITY BETWEEN 2034 LOCAL PLAN SCENARIO 2 AND SCENARIO 148                                            |
| FIGURE 6.4:  | CHANGES IN TOTAL TRIPS BY MODE IN COVENTRY LOCAL AUTHORITY BETWEEN 2034 LOCAL PLAN SCENARIO 2 AND SCENARIO 1 (PERSON TRIPS PER 12 HOUR WEEKDAY)49            |
| FIGURE 6.5:  | SCENARIO 1 AM PEAK - KERESLEY ORIGIN & DESTINATION AS A PERCENTAGE OF THE TOTAL TRAFFIC FLOW ON NETWORK50                                                    |
| FIGURE 6.6:  | 2034 SCENARIO 1 PM PEAK - KERESLEY ORIGIN & DESTINATION AS A PERCENTAGE OF THE TOTAL TRAFFIC FLOW ON NETWORK50                                               |
| FIGURE 6.7:  | KERESLEY HIGHWAY NETWORK52                                                                                                                                   |
| FIGURE 6.8:  | AM PEAK SCENARIO 1 VS SCENARIO 2 V/C RATIO DIFFERENCE PLOT53                                                                                                 |
| FIGURE 6.9:  | PM PEAK SCENARIO 1 VS SCENARIO 2 V/C RATIO DIFFERENCE PLOT53                                                                                                 |
| FIGURE 6.11: | LOCATIONS FOR KERESLEY V/C TABLE54                                                                                                                           |
| FIGURE 6.12: | AM PEAK 2034 SCENARIO 1 AVERAGE JUNCTION DELAY55                                                                                                             |
| FIGURE 6.13: | AM PEAK 2034 SCENARIO 2 AVERAGE JUNCTION DELAY56                                                                                                             |

| FIGURE 6.14: | AM PEAK 2034 SCENARIO 1 – SCENARIO 2 AVERAGE JUNCTION DELAY56                                                             |
|--------------|---------------------------------------------------------------------------------------------------------------------------|
| FIGURE 6.15: | PM PEAK 2034 SCENARIO 1 AVERAGE JUNCTION DELAY57                                                                          |
| FIGURE 6.16: | PM PEAK 2034 SCENARIO 2 AVERAGE JUNCTION DELAY57                                                                          |
| FIGURE 6.17: | PM PEAK 2034 SCENARIO 1 – SCENARIO 2 AVERAGE JUNCTION DELAY58                                                             |
| FIGURE 7.1:  | CHANGES IN POPULATION WITHIN COVENTRY LOCAL AUTHORITY BETWEEN 2034 LOCAL PLAN SCENARIO 3 AND SCENARIO 160                 |
| FIGURE 7.2:  | CHANGES IN TOTAL EMPLOYMENT IN COVENTRY LOCAL AUTHORITY BETWEEN 2034 LOCAL PLAN SCENARIO 1 AND SCENARIO 361               |
| FIGURE 7.3:  | CHANGES IN SCHOOLS BY EDUCATION LEVEL IN COVENTRY LOCAL AUTHORITY BETWEEN 2034 LOCAL PLAN SCENARIO 3 AND SCENARIO 162     |
| FIGURE 7.4:  | CHANGES IN TOTAL TRIP PRODUCTIONS IN COVENTRY LOCAL AUTHORITY BETWEEN 2034 LOCAL PLAN SCENARIO 3 AND SCENARIO 163         |
| FIGURE 7.5 : | CHANGES IN TOTAL TRIP PRODUCTIONS BY MODE IN COVENTRY LOCAL AUTHORITY BETWEEN 2034 LOCAL PLAN SCENARIO 3 AND SCENARIO 164 |
| FIGURE 7.6:  | 2034 SCENARIO 1 AM PEAK - EASTERN GREEN ORIGIN & DESTINATIONS AS A PERCENTAGE OF THE TOTAL TRAFFIC FLOW ON NETWORK)65     |
| FIGURE 7.7:  | 2034 SCENARIO 1 PM PEAK - EASTERN GREEN ORIGIN & DESTINATIONS AS A PERCENTAGE OF THE TOTAL TRAFFIC FLOW ON NETWORK65      |
| FIGURE 7.8:  | EASTERN GREEN HIGHWAY NETWORK67                                                                                           |
| FIGURE 7.9:  | AM PEAK SCENARIO 1 VS SCENARIO 3 V/C RATIO DIFFERENCE PLOT68                                                              |
| FIGURE 7.10: | PM PEAK SCENARIO 1 VS SCENARIO 3 V/C RATIO DIFFERENCE PLOT68                                                              |
| FIGURE 7.11: | LOCATIONS FOR EASTERN GREEN V/C TABLE69                                                                                   |
| FIGURE 7.12  | SCENARIO 3 JOURNEY TIME ROUTE A ALONG A45 THROUGH TO HOLYHEAD ROAD70                                                      |
| FIGURE 7.13: | SCENARIO 3 JOURNEY TIME ROUTE B ALONG CROMWELL LANE71                                                                     |
| FIGURE 7.14: | SCENARIO 3 JOURNEY TIME ROUTE C ALONG BROAD LANE71                                                                        |
| FIGURE 7.15: | AM PEAK 2034 SCENARIO 1 AVERAGE JUNCTION DELAY72                                                                          |
| FIGURE 7.16: | AM PEAK 2034 SCENARIO 3 AVERAGE JUNCTION DELAY73                                                                          |
| FIGURE 7.17: | AM PEAK 2034 SCENARIO 1 – SCENARIO 3 AVERAGE JUNCTION DELAY73                                                             |
| FIGURE 7.18: | PM PEAK 2034 SCENARIO 1 AVERAGE JUNCTION DELAY74                                                                          |
| FIGURE 7.19: | PM PEAK 2034 SCENARIO 3 AVERAGE JUNCTION DELAY74                                                                          |
| FIGURE 7.20: | PM PEAK 2034 SCENARIO 1 – SCENARIO 3 AVERAGE JUNCTION DELAY75                                                             |
| FIGURE 8.1:  | CHANGES IN POPULATION WITHIN COVENTRY LOCAL<br>AUTHORITY BETWEEN 2034 LOCAL PLAN SCENARIO 4 AND<br>SCENARIO 1             |

| FIGURE 8.2:   | CHANGES IN TOTAL TRIP PRODUCTIONS IN COVENTRY LOCAL AUTHORITY BETWEEN 2034 LOCAL PLAN SCENARIO 4 AND SCENARIO 1         |
|---------------|-------------------------------------------------------------------------------------------------------------------------|
| FIGURE 8.3:   | CHANGES IN TOTAL TRIP PRODUCTIONS BY MODE IN COVENTRY LOCAL AUTHORITY BETWEEN 2034 LOCAL PLAN SCENARIO 4 AND SCENARIO 1 |
| FIGURE 8.4:   | 2034 SCENARIO 1 AM PEAK - CROMWELL LANE ORIGIN & DESTINATION AS A PERCENTAGE OF THE TOTAL TRAFFIC FLOW ON NETWORK80     |
| FIGURE 8.5:   | 2034 SCENARIO 1 PM PEAK - CROMWELL LANE ORIGIN & DESTINATION AS A PERCENTAGE OF THE TOTAL TRAFFIC FLOW ON NETWORK80     |
| FIGURE 8.6:   | CROMWELL LANE HIGHWAY NETWORK81                                                                                         |
| FIGURE 8.7:   | AM PEAK SCENARIO 1 VS SCENARIO 4 V/C DIFFERENCE PLOT82                                                                  |
| FIGURE 8.8:   | PM PEAK SCENARIO 1 VS SCENARIO 4 V/C DIFFERENCE PLOT82                                                                  |
| FIGURE 8.9:   | SCENARIO 4 JOURNEY TIME ROUTE ALONG CROMWELL LANE83                                                                     |
| FIGURE 8.10:  | AM PEAK 2034 SCENARIO 1 AVERAGE JUNCTION DELAY84                                                                        |
| FIGURE 8.11:  | AM PEAK 2034 SCENARIO 4 AVERAGE JUNCTION DELAY85                                                                        |
| FIGURE 8.12:  | AM PEAK 2034 SCENARIO 1 – SCENARIO 4 AVERAGE JUNCTION DELAY85                                                           |
| FIGURE 8.13:  | PM PEAK 2034 SCENARIO 1 AVERAGE JUNCTION DELAY86                                                                        |
| FIGURE 8.14:  | PM PEAK 2034 SCENARIO 4 AVERAGE JUNCTION DELAY86                                                                        |
| FIGURE 8.15:  | PM PEAK 2034 SCENARIO 1 – SCENARIO 3 AVERAGE JUNCTION DELAY87                                                           |
| FIGURE 10.1:  | KERESLEY ZONES95                                                                                                        |
| FIGURE 10.2:  | AM PEAK VOLUME/CAPACITY PLOT - SCENARIO A297                                                                            |
| FIGURE 10.3:  | AM PEAK VOLUME/CAPACITY PLOT - SCENARIO B297                                                                            |
| FIGURE 10.4:  | AM PEAK VOLUME/CAPACITY PLOT - SCENARIO C297                                                                            |
| FIGURE 10.5:  | AM PEAK VOLUME/CAPACITY PLOT - SCENARIO D297                                                                            |
| FIGURE 10.6:  | PM PEAK VOLUME/CAPACITY PLOT – SCENARIO A298                                                                            |
| FIGURE 10.7:  | PM PEAK VOLUME/CAPACITY PLOT – SCENARIO B298                                                                            |
| FIGURE 10.8:  | PM PEAK VOLUME/CAPACITY PLOT – SCENARIO C298                                                                            |
| FIGURE 10.9:  | PM PEAK VOLUME/CAPACITY PLOT – SCENARIO D298                                                                            |
| FIGURE 10.10: | AM PEAK VOLUME/CAPACITY DIFFERENCE PLOT AM 2034<br>SCENARIO B2 - AM 2034 SCENARIO A2100                                 |
| FIGURE 10.11: | AM PEAK VOLUME/CAPACITY DIFFERENCE PLOT AM 2034<br>SCENARIO C2 - AM 2034 SCENARIO A2100                                 |
| FIGURE 10.12: | AM PEAK VOLUME/CAPACITY DIFFERENCE PLOT AM 2034<br>SCENARIO D2 - AM 2034 SCENARIO A2100                                 |
| FIGURE 10.13: | PM PEAK VOLUME/CAPACITY DIFFERENCE PLOT PM 2034<br>SCENARIO B - PM 2034 SCENARIO A101                                   |
| FIGURE 10.14: | PM PEAK VOLUME/CAPACITY DIFFERENCE PLOT PM 2034<br>SCENARIO C - PM 2034 SCENARIO A101                                   |
| FIGURE 10.15: | PM PEAK VOLUME/CAPACITY DIFFERENCE PLOT PM 2034<br>SCENARIO D - PM 2034 SCENARIO A101                                   |
| FIGURE 10.16: | JOURNEY TIME ROUTE 1104                                                                                                 |

| FIGURE 10.17: | JOURNEY TIME ROUTE 210                                                             | )4 |
|---------------|------------------------------------------------------------------------------------|----|
| FIGURE 10.18: | JOURNEY TIME ROUTE 310                                                             | )5 |
| FIGURE 10.19: | TRAFFIC FLOW LOCATIONS AROUND KERESLEY DEVELOPMENT10                               | )6 |
| FIGURE 10.20: | AM PEAK KERESLEY SCENARIO B2 – SCENARIO A2 AVERAG JUNCTION DELAY10                 | Ε  |
| FIGURE 10.21: | AM PEAK KERESLEY SCENARIO C2 – SCENARIO A2 AVERAG JUNCTION DELAY10                 |    |
| FIGURE 10.22: | AM PEAK KERESLEY SCENARIO D2 – SCENARIO A2 AVERAG JUNCTION DELAY10                 |    |
| FIGURE 10.23: | PM PEAK KERESLEY SCENARIO B2 – SCENARIO A2 AVERAG JUNCTION DELAY11                 |    |
| FIGURE 10.24: | PM PEAK KERESLEY SCENARIO C2 – SCENARIO A2 AVERAG JUNCTION DELAY11                 |    |
| FIGURE 10.25: | AM PEAK KERESLEY SCENARIO D2 – SCENARIO A2 AVERAG JUNCTION DELAY11                 |    |
| FIGURE 10.26: | AM PEAK VOLUME/CAPACITY DIFFERENCE PLOT SCENARIO C1 VS SCENARIO C211               |    |
| FIGURE 10.27: | AM PEAK VOLUME/CAPACITY DIFFERENCE PLOT SCENARIO D1 VS SCENARIO D211               |    |
| FIGURE 10.28: | PM PEAK VOLUME/CAPACITY DIFFERENCE PLOT SCENARIO C1 VS SCENARIO C211               |    |
| FIGURE 10.29: | PM PEAK VOLUME/CAPACITY DIFFERENCE PLOT SCENARIO D1 VS SCENARIO D211               |    |
| FIGURE 10.30: | KERESLEY JOURNEY TIME 1 WITHOUT LINK ROAD11                                        | 4  |
| FIGURE 10.31: | KERESLEY JOURNEY TIME 1 WITH LINK ROAD11                                           | 4  |
| FIGURE 10.32: | AM PEAK SCENARIO C1 KERESLEY LINK ROAD TRAFFIC11                                   | 7  |
| FIGURE 10.33: | AM PEAK SCENARIO D1 KERESLEY LINK ROAD TRAFFIC11                                   | 7  |
| FIGURE 10.34: | PM PEAK SCENARIO C1 KERESLEY LINK ROAD TRAFFIC11                                   | 9  |
| FIGURE 10.35: | PM PEAK SCENARIO D1 KERESLEY LINK ROAD TRAFFIC11                                   | 9  |
| FIGURE 10.36: | COUNT LOCATIONS FOR ANPR DATA12                                                    | 20 |
| FIGURE 10.37: | ESTIMATED DEMAND ON THE KERESLEY LINK ROAD OVER A 12 HOUR PERIOD IN 20 (7AM-7PM)12 |    |

### APPENDICES

## A P P E N D I X A COVENTRY CITY COUNCIL LOCAL PLAN DEVELOPMENT ASSUMPTIONS

APPENDIX A-1 LOCAL PLAN DEVELOPMENT ASSUMPTIONS

A P P E N D I X B LOCAL PLAN HIGHWAY ASSUMPTIONS

APPENDIX B-1 LOCAL PLAN HIGHWAY ASSUMPTIONS

### **EXECUTIVE SUMMARY**

### INTRODUCTION

WSP | Parsons Brinckerhoff were commissioned by Coventry City Council (CCC) to undertake a transport modelling exercise to assess the highway impacts of the Coventry Local Plan. The Coventry Area Strategic Model (CASM), a multi modal transport model, developed by CCC and Highways England, was used as an evidence base to assess the Local Plan proposals. It is important to understand that the CASM transport model is a strategic modelling tool capable of identifying the strategic impacts of future growth within the Coventry Local Authority area.

This report summarises the methodology and results of the transport modelling exercise to understand the potential highway network impacts from the emerging Coventry Local Plan development assumptions.

The report builds upon the transport modelling work completed for the Local Plan in December 2015 documented in the Coventry Local Plan – Modelling Report (WSP I Parsons Brinckerhoff, December 2015). This report responds to the questions raised by the Inspector as part of the Local Plan hearing process.

### **SCENARIOS AND ASSUMPTIONS**

WSP | Parsons Brinckerhoff have undertaken four Coventry Local Plan scenarios within a forecasting year of 2034 which are listed below:

- → Scenario 1: 2034 Full Local Plan (all development)
- → Scenario 2: 2034 Local Plan (with Keresley consented development only, 800 houses)
- → Scenario 3: 2034 Local Plan (without Eastern Green development)
- → Scenario 4: 2034 Local Plan (without Cromwell Lane development)

In all scenarios the growth in houses and jobs between 2013 and 2034 remains consistent within Coventry Local Authority, with 25,000 houses and 28,200 jobs. The only difference between the scenarios is where the jobs and houses are located.

In addition to the Local Plan development scenarios, an assessment was also undertaken to ascertain the impact on the highway network with various stages of Keresley development, without the Keresley Link Road.

The housing, employment and school assumptions associated with the Coventry Local Plan and those in neighbouring authorities close to the Coventry boundary were discussed and agreed with CCC.

In addition to this the highway and public transport network improvements associated with the Coventry Local Plan scenarios were also outlined and agreed with CCC.

### **OUTPUTS**

#### **FULL LOCAL PLAN**

The Full Local Plan development was compared against 2013 Base Year conditions. As a result of the proposed Local Plan growth the population in the Coventry Local Authority between 2013 and 2034 increases by 19% and the number of trips made by all modes increases by 18%. Proposed developments on the outskirts of Coventry predominantly use car as a mode of travel, whilst developments close to the city centre have a greater proportion of trips being made by public transport, walking and cycling.

Within the Full Local Plan proposals the proportion of trips travelling from Coventry to areas outside the Local Authority increases in the AM peak along with the trips travelling to Coventry from outside the Local Authority area in the PM peak. This suggests that a higher proportion of new residents of Coventry will tend to travel outside of Coventry to work in the future. This is because in the future in nearby local authorities there is a reduction in the number of workers compared to jobs, drawing workers in Coventry to jobs outside the Local Authority. Within Coventry there is an increase in the proportion of trips travelling to and from Coventry NW which is where significant new houses and jobs are located. There is also an increase in the proportion of car trips travelling to Coventry SE in the AM peak and from Coventry SE in the PM peak which is a result of the new jobs at Whitley.

As a result of the increase in traffic that occurs with the Full Local Plan, there is an increase in the amount of distance that is travelled by car and the delay which is experienced by cars across the Coventry Local Authority area. There is also a slight reduction in the average speed of vehicles in Coventry Local Authority of up to 3kph. As a result of the increase in traffic some of the spare capacity on the local highway network is filled, in particular the areas around the locations of the development sites and key routes around Coventry including the A45 and A46.

The CASM Highway Assignment Model (HAM) does not model highway junctions in detail, but it can highlight junctions which are experiencing more delay with the Full Local Plan compared to existing conditions. In both AM and PM peak time periods, junctions which experience an increase in delay as a result of the Coventry Local Plan are located on key routes into and around Coventry, particularly on the A45 and junctions around the M6. As and when planning applications for development come forward it will be important to assess the impact of the proposals on junction performance in the local area to identify the extent of the issue and ensure that appropriate mitigation is implemented.

### **KERESLEY**

The impact the full Keresley development has on the local highway network was assessed. The key roads which car trips to and from the Keresley development site use are those within close proximity to the site including Bennett's Road, Tamworth Road and the new Keresley Link Road. Traffic from Keresley travels northbound towards the M6, southbound into Coventry and westbound towards Birmingham. The full Keresley development does not have a significant impact on the total network delay or average speed. In the more localised Keresley area there is an increase in highway delay and car travel distance but the changes are small, under 5%. The Keresley Link Road attracts vehicles to use the road, with increases in traffic on Long Lane and Bennetts Road, however all traffic flow increases still leave the roads with spare capacity. The Keresley Link Road also reduces traffic volumes on Tamworth Road and Sandpits Lane. There are some increases in junction delay around the Keresley development, which are small, less than 20 seconds. As and when a planning application for development is produced it will be important to assess the impact of the proposals on junction performance in the local area to identify the extent of the issue and ensure that appropriate mitigation is implemented.

An assessment was undertaken as to the impacts of various levels of development at Keresley with and without the Keresley Link Road and the impacts on the highway network. The operation of the local highway network was assessed by considering traffic volumes, junction delay and journey times in the local area.

As the number of houses increases at Keresley, without the Link Road there is an increase in traffic, on B4076, Tamworth Road, Bennetts Road, Brownshill Green and Watery Lane in some cases the increase in one way traffic is up to 200 vehicles. However these increases in traffic flow can be accommodated on the highway network and do not generate significant congestion issues. The increase in traffic flows results in some reductions in journey times in the area. Average junction delay increases are low, however it would be important as and when the planning application comes forward for the site that detailed junction modelling is undertaken to ensure the junctions around the site operate effectively.

With the Keresely Link Road there is a reduction in traffic on some local roads, including Tamworth Road, Sandpits Land, Bennetts Road and Watery Lane. However, there is more traffic, on roads connecting with the Keresley Link Road, including Long Lane and Coudon Wedge Drive. Highway network statistics show that the Link Road provides most improvement to the highway network performance when 3,100 houses are built. Journey time improvements with the Link Road are most significant between A45 and Bennetts Road where savings reach up to 135 seconds. The traffic flows on the Keresley Link Road are greatest in the west with two way flows approaching 1,250 vehicles. The traffic flow on the eastern section of the road is very low, 300 vehicles. As a check against the CASM HAM outputs, survey data was collected in October 2014 to identify the existing traffic which could potentially use the Link Road in the future. This indicates that by 2034, with the current development assumptions, there could be 17,850-19,820 vehicles that use the road daily, with the western part of the Link Road having a lot more trips than the eastern section. The eastern section of the road could become more popular following improvements to M6 Junction 3 and further development growth in Nuneaton and Bedworth.

### **EASTERN GREEN**

The impact the Eastern Green development has on the local highway network was assessed. The key roads which car trips to and from the Eastern Green development site use are those within close proximity to the site including the A45, Pickford Green Lane, Broad Lane and Banner Lane. Traffic from Eastern Green travels westbound towards Birmingham, eastbound towards Coventry and southbound towards Kenilworth. The Eastern Green development area does not have a significant impact on the total network delay or average speed. In the more localised Eastern Green area, there is an increase in highway delay and car travel distance but the changes are small, under 5%.

The Eastern Green development increases traffic on the local roads around the development however there is available capacity to accommodate this increase in traffic. Journey times along the roads close to the Eastern Green development increase but the changes are relatively small, up to 42 seconds increase on a journey of over 8 minutes equating to a 9% increase. There are some increases in junction delay around the Eastern Green development, which are small, less than 20 seconds. As and when a planning application for development is produced it will be important to assess the impact of the proposals on junction performance in the local area to identify the extent of the issue and ensure that appropriate mitigation is implemented.

#### **CROMWELL LANE**

The impact the Cromwell Lane development has on the local highway network was assessed. The key roads which car trips to and from the Cromwell Lane development site use are those within close proximity to the site including Cromwell Lane, Charter Avenue and Westwood Heath Road. Traffic from the Cromwell Lane development travels eastbound towards Coventry and

westbound towards Birmingham. The volume of trips associated with the Cromwell Lane development is low and constitutes under 7% of traffic on the local highway network.

The Cromwell Lane development slightly increases traffic volumes on Cromwell Lane but the changes are very small and the road remains within an acceptable operating volume. The Cromwell Lane development does not have a significant impact on the total network delay or average speed. Journey times along the roads close to the Cromwell Lane development remain very similar to when the development is not there, with only a couple of seconds change with the development in place. There are some increases in junction delay around the Cromwell Lane development, which are small, less than 20 seconds.

A detailed junction assessment has been undertaken which indicates that some junctions in the local area currently have capacity issues which are exacerbated in the future, whether the Cromwell Lane development is built or not. Further work will be considered to investigate mitigation measures to be adopted at these junctions to help improve their operation.

### **SUMMARY**

Overall this report has assessed the impacts CCC's Full Local Plan will have as well as three individual development sites. Junctions have been highlighted to identify where pressures may occur in the future. With the appropriate infrastructure in place, which should be assessed as planning applications come forward, the proposals put forward by CCC within the Local Plan should ensure the highway network continues to operate effectively in the future.

# 1 INTRODUCTION

### 1.1 PURPOSE OF REPORT

- 1.1.1 WSP | Parsons Brinckerhoff were commissioned by Coventry City Council (CCC) to undertake a transport modelling exercise to assess the highway impacts of the Coventry Local Plan. The Coventry Area Strategic Model (CASM), a multi modal transport model, was used as an evidence base to assess the Local Plan proposals. It is important to understand that the CASM transport model is a strategic modelling tool capable of identifying the strategic impacts of future growth within the Coventry Local Authority area.
- 1.1.2 This report summarises the methodology and results of the transport modelling exercise to understand the potential highway network impacts from the emerging Coventry Local Plan development assumptions.
- 1.1.3 This report builds upon the transport modelling work completed for the Local Plan in December 2015 documented in the Coventry Local Plan Modelling Report (WSP I Parsons Brinckerhoff, December 2015). This report responds to of the Inspector as part of the Local Plan hearing process.

### 1.2 OVERVIEW OF STUDY

- 1.2.1 WSP | Parsons Brinckerhoff have undertaken four Coventry Local Plan scenarios within a forecasting year of 2034 which are listed below:
  - → Scenario 1: 2034 Full Local Plan (all development)
  - → Scenario 2: 2034 Local Plan (with Keresley consented development only, 800 houses)
  - → Scenario 3: 2034 Local Plan (without Eastern Green development)
  - → Scenario 4: 2034 Local Plan (without Cromwell Lane development)

Table 1.1: CASM Local Plan Scenarios

| LOCAL PLAN | KERESLEY DEVELOPMENT |                 | Cromwell    | Eastern     |
|------------|----------------------|-----------------|-------------|-------------|
| SCENARIO   | 800 HOUSES AND ONE   | 3100 HOUSES AND | LANE        | GREEN       |
| GCENARIO   | PRIMARY SCHOOL       | ALL SCHOOLS     | DEVELOPMENT | DEVELOPMENT |
| SCENARIO 1 | ×                    | ✓               | ✓           | ✓           |
| SCENARIO 2 | ✓                    | ×               | ✓           | ✓           |
| SCENARIO 3 | ×                    | ✓               | ✓           | ×           |
| SCENARIO 4 | ×                    | ✓               | ×           | ✓           |

- 1.2.2 In all scenarios the growth in houses and jobs between 2013 and 2034 remains consistent within Coventry Local Authority, with 25,000 houses and 28,200 jobs. The only difference between the scenarios is where the jobs and houses are allocated.
- 1.2.3 Scenario 1 represents the full Local Plan scenario with the growth in houses and jobs in the Coventry area between 2013 and 2034 in their proposed locations. Scenario 2 assumes the 800 houses with planning permission will be built at Keresley but the additional 2,300 proposed houses at Keresley will not be built in that location. Scenarios 3 to 4 represent the Local Plan growth in houses and jobs but without the specific development sites of Eastern Green (2,250 houses and 4,250 jobs) and Cromwell Lane (240 houses), respectively. For scenarios 2 to 4 when the proposed development is not represented in CASM the growth in houses and jobs are instead being spread out across the Coventry Local Authority area; hence all scenarios include the same overall growth in jobs and population. More details of the quantum of these developments are reported in Chapter 3.

- 1.2.4 The four scenarios will help us draw conclusions as to the specific impacts that the three specific developments have on Coventry and the local vicinity.
- 1.2.5 In addition to the Local Plan development scenarios, an assessment of the number of houses that can be built before the Keresley Link Road has to be completed is undertaken.

### 1.3 REPORT STRUCTURE

- 1.3.1 This report is structured as follows:
  - → Chapter 2: Provides an overview of the Coventry Area Strategic Model (CASM)
  - → Chapter 3: Summarises the Coventry Local Plan development assumptions
  - → Chapter 4: Outlines the highway and public transport assumptions
  - → Chapter 5: Summarises the results of Local Plan Scenario 1
  - → Chapter 6: Summarises the results of Local Plan Scenario 2
  - → Chapter 7: Summarises the results of Local Plan Scenario 3
  - → Chapter 8: Summarises the results of Local Plan Scenario 4
  - → Chapter 9: Summarises the results of the Local Plan Scenarios
  - → Chapter 10: Summarises the assumptions and results of the Keresley Link Road assessment

## 2 OVERVIEW OF CASM

### 2.1 OVERVIEW OF CASM

2.1.1 In 2015 WSP I Parsons Brinckerhoff developed the Coventry Area Strategic Model (CASM) to support the Coventry Local Plan and Highways England Junction M6 2-4 Smart Motorway Project. The model covers the area shown in Figure 2.1.

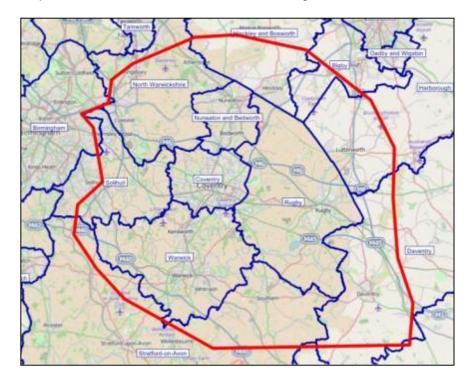



Figure 2.1: Coventry Area Strategic Model Area

- 2.1.2 CASM consists of the following models:
  - → CASM Transport Demand Model (TDM)
  - → CASM Highway Assignment Model (HAM)
  - → CASM Public Transport Assignment Model (PTAM).
- 2.1.3 For all CASM models there is a 2013 calibrated and validated base year model and the reports for this can be requested through Coventry City Council.
- 2.1.4 In December 2015 while the CASM Transport Demand Model (TDM) was still under development, the CASM Highway Assignment Model (HAM) was used to generate a 2031 forecast year to undertake impact testing of various demand and network scenarios for the emerging Coventry Local Plan. Modelling methodology and assumptions are described in Coventry Local Plan Modelling Report (WSP I Parsons Brinckerhoff, December 2015).
- 2.1.5 In 2016, the CASM HE Forecast models were developed by WSP I Parsons Brinckerhoff for use by Highway England's Consultants (Jacobs) to undertake an economic assessment of the M6 Junction 2 to Junction 4 Smart Motorway scheme proposals using the full CASM suite of models

(TDM, HAM, and PTAM). Four forecast year models were produced: 2019, 2026, 2034 and 2041 with and without the M6 Junction 2 to 4 schemes proposals.

2.1.6 These forecasts contain all developments and infrastructure in the area which at the time were considered to have a high level certainty of being realised, in line with Department for Transport (DfT) TAG Unit M4 Forecasting and Uncertainty, March 2014. Note these forecasts were developed constraining to NTEM version 6.2; NTEM version 7.0 is the latest version but this was not available when the forecasting work was undertaken. The basis of the Coventry Local Plan transport models, outlined in this report, are the 2034 forecasts from the M6 Junction 2 to 4 assessment. The report outlining the forecasting process for CASM can be requested through Coventry City Council.

# 3 COVENTRY LOCAL PLAN DEVELOPMENT ASSUMPTIONS

### 3.1 INTRODUCTION

- 3.1.1 This chapter of the report sets out the development assumptions used in the CASM 2034 Local Plan transport model scenarios to represent the spatial strategy promoted by Coventry City Council for the delivery of both housing and employment growth between 2013 and 2034.
- 3.1.2 The basis of the 2034 CASM Coventry Local Plan transport model scenarios was the 2034 CASM transport model forecast developed for the M6 Junction 2 to 4 Highways England Smart Motorway scheme. This includes all housing and employment developments with a high degree of certainty within the study area, shown in Figure 2.1.

### 3.2 RESIDENTIAL DEVELOPMENT

3.2.1 A review of all residential developments to be included within the 2034 CASM Local Plan transport model scenarios was completed with CCC to ensure the location and numerical assumptions were in line with the current Local Plan. Table 3.1 presents the residential developments located in the CCC Local Authority area, and Figure 3.1 shows the CASM zones within which these residential developments are located. Appendix A contains more details on the developments and locations.

**Table 3.1: Residential Developments in CCC Local Authority** 

| RESIDENTIAL DEVELOPMENT                              | Number of |
|------------------------------------------------------|-----------|
| RESIDENTIAL DEVELOPMENT                              | DWELLINGS |
| Walsgrave Hill Farm                                  | 900       |
| Manor Farm Regeneration Area                         | 855       |
| New Century Park                                     | 674       |
| Former Peugeot Site                                  | 314       |
| Coventry College, The Butts                          | 264       |
| Evening Telegraph Site                               | 230       |
| Friargate Regeneration Scheme (The Business Quarter) | 400       |
| Canley Regeneration Scheme                           | 481       |
| Acordis/Acetate, Foleshill Road                      | 344       |
| AXA Tower, Well Street                               | 286       |
| Paragon Park                                         | 700       |
| Central Shopping Area North                          | 300       |
| Willenhall Triangle                                  | 255       |
| Bishopgate                                           | 265       |
| Keresley                                             | 3,100     |
| Eastern Green                                        | 2,250     |
| Sutton Stop, Grange Road                             | 285       |
| Land West of Cromwell Lane                           | 240       |
| Whitmore Park                                        | 730       |
| Parkside                                             | 300       |
| Former Formula One Hotel                             | 285       |
| Town Centre                                          | 2,115     |
| Browns Lane                                          | 500       |
| Land at Grange Hill Farm                             | 105       |
| London Road Allard Way                               | 150       |
| Former Lyng Hall Playing Field                       | 185       |
| Elms Farm                                            | 150       |
| Site of LTI Factory                                  | 110       |

| RESIDENTIAL DEVELOPMENT             | Number of |
|-------------------------------------|-----------|
| RESIDENTIAL DEVELOF MENT            | DWELLINGS |
| Former Transco Site, Abbots Lane    | 100       |
| Central Depot, Foleshill Road       | 143       |
| Former City College, Tile Hill Lane | 115       |
| Land West of Banner Lane            | 258       |
| Former Jaguar Expansion Land        | 125       |

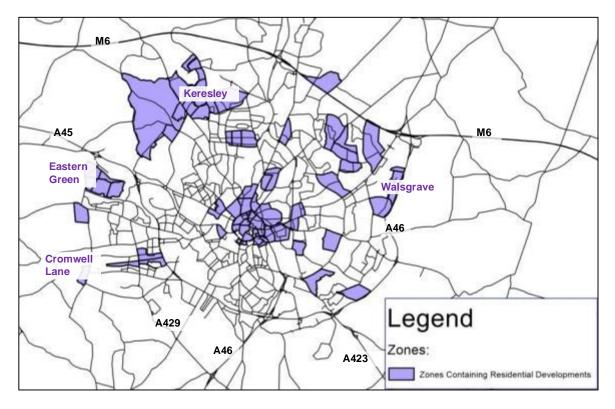



Figure 3.1: Location of Residential Developments in Coventry

3.2.2 In addition to the development within the CCC Local Authority area, two key development sites within Warwick District Council area, close to the Coventry Local Authority boundary, were also reviewed and included. These are presented in Table 3.5 and illustrated in Figure 3.2.

**Table 3.2: Residential Developments within Neighbouring Authorities** 

| RESIDENTIAL DEVELOPMENT | Number of |  |
|-------------------------|-----------|--|
| RESIDENTIAL DEVELOPMENT | DWELLINGS |  |
| Westwood Heath          | 450       |  |
| Kings Hill              | 1,800     |  |

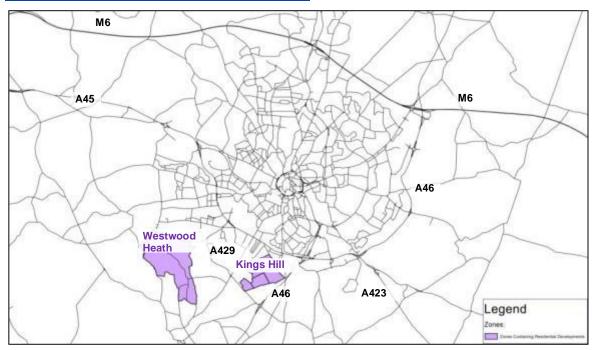



Figure 3.2: Location of Residential Developments within Warwick District Council

### 3.3 EMPLOYMENT GROWTH

3.3.1 Similarly, a review of all employment developments to be included within the 2034 CASM Local Plan model was completed with input from CCC, with location and quantum assumptions agreed. Table 3.3 lists the employment developments located within Coventry District, and Figure 3.3 Figure 3.1 shows the CASM zones within which these developments are located. See Appendix A for further details.

**Table 3.3: Employment Developments within Coventry** 

| EMPLOYMENT DEVELOPMENT                               | Number of Jobs<br>GENERATED |  |  |
|------------------------------------------------------|-----------------------------|--|--|
| Friargate Regeneration Scheme (The Business Quarter) | 15,000                      |  |  |
| Central Shopping Area North                          | 447                         |  |  |
| Eastern Green                                        | 4,250                       |  |  |
| Sutton Stop, Grange Road                             | 135                         |  |  |
| Whitmore Park                                        | 100                         |  |  |
| Town Centre                                          | 1,191                       |  |  |
| Lyons Park                                           | 2,000                       |  |  |
| Whitley/ Whitley East                                | 5,000                       |  |  |

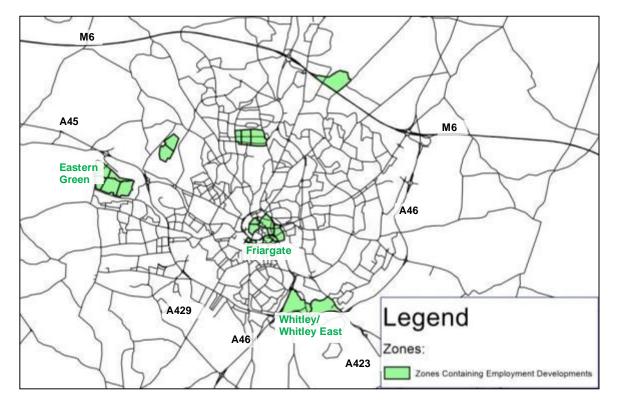
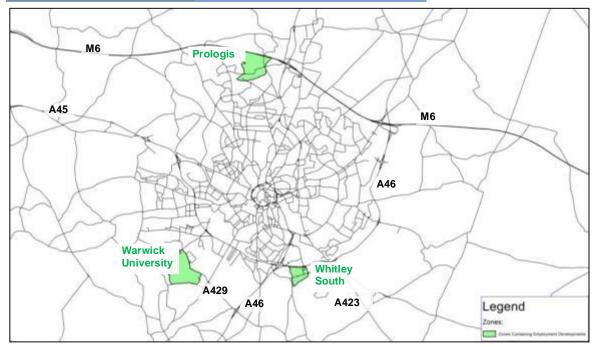


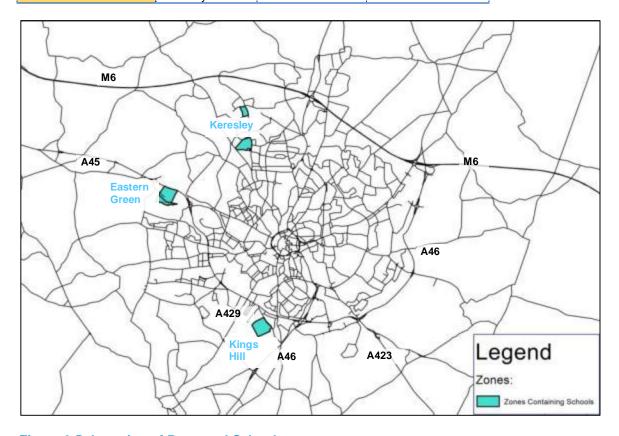

Figure 3.3: Location of Employment Developments in Coventry

In addition to the development within Coventry Local Authority area, key development sites within two neighbouring authorities close to Coventry were also reviewed and included; these are presented in Table 3.4 and Figure 3.4.

Table 3.4: Employment Developments within Neighbouring Authorities

| RESIDENTIAL DEVELOPMENT | LOCAL AUTHORITY        |       |
|-------------------------|------------------------|-------|
|                         |                        |       |
| WHITLEY SOUTH           | Warwick                | 7,000 |
| WARWICK UNIVERSITY      | Warwick                | 500   |
| PROLOGIS EXPANSION      | Nuneaton &<br>Bedworth | 400   |





Figure 3.4: Location of Employment Developments within Neighbouring Authorities

### 3.4 SCHOOLS

- 3.4.1 Alongside the developments to be included within the 2034 CASM Local Plan model, a review was also conducted of any new development-related schools to be included.
- 3.4.2 Table 3.5 below lists the proposed schools included within the 2034 CASM Local Plan model within the districts of Coventry and Warwick and these are illustrated in Figure 3.5.

**Table 3.5 School Assumptions** 

| DEVELOPMENT       | SCHOOL TYPE                                                        | Number of Primary<br>School Students | Number of<br>Secondary School<br>Students |
|-------------------|--------------------------------------------------------------------|--------------------------------------|-------------------------------------------|
| Keresley SUE      | Two Form Entry Primary School 420                                  |                                      | 0                                         |
| Relesiey SUL      | Eight Form Entry<br>Secondary<br>School                            | 0                                    | 1200                                      |
| Eastern Green SUE | Two Form Entry<br>Primary School<br>(split across 2<br>CASM zones) | 420                                  | 0                                         |
| Kings Hill SUE    | Two Form Entry<br>Primary School                                   | 420                                  | 0                                         |



**Figure 3.5: Location of Proposed Schools** 

### 3.5 LOCAL PLAN SCENARIOS

3.5.1 The development assumptions outlined above are all contained within Scenario 1. The differences between Scenario 1 and the other scenarios are outlined in Table 3.6.

**Table 3.6: Local Plan Scenarios** 

| LOCAL PLAN<br>SCENARIO | Keresley Development |                 | CROMWELL    | Eastern     |
|------------------------|----------------------|-----------------|-------------|-------------|
|                        | 800 HOUSES AND ONE   | 3100 HOUSES AND | LANE        | GREEN       |
|                        | PRIMARY SCHOOL       | ALL SCHOOLS     | DEVELOPMENT | DEVELOPMENT |
| SCENARIO 1             | ×                    | ✓               | ✓           | ✓           |
| SCENARIO 2             | ✓                    | ×               | ✓           | ✓           |
| SCENARIO 3             | ×                    | ✓               | ✓           | ×           |
| SCENARIO 4             | ×                    | ✓               | ×           | ✓           |

# 4 HIGHWAY AND PUBLIC TRANSPORT ASSUMPTIONS

### 4.1 INTRODUCTION

4.1.1 This chapter outlines the highway and public transport assumptions which were incorporated into the 2034 CASM Local Plan transport models for all four scenarios.

### 4.2 SCENARIO 1

### **HIGHWAY**

- 4.2.1 The Local Plan Scenario 1 highway network was based on the 2034 CASM HE Forecast Model, which included highway improvements that were deemed to have a high enough certainty of being realised. In addition to these, following discussions with CCC, additional highway schemes were coded into the network. The highway schemes included within Coventry Local Authority area and those boarding it are in Table 4.1, and are detailed in Appendix B. The CASM M6 Junction 2-4 Forecasting Report contains all details on the highway and public transport schemes included within the 2034 CASM HE Forecast model within the districts outlined below, this document can be requested through Coventry City Council.
  - Birmingham
  - Blaby
  - Coventry
  - Daventry
  - Harborough
  - Hinckley ad Bosworth
  - North Warwickshire
  - Nuneaton and Bedworth
  - Rugby
  - Solihull

Table 4.1: Highway Network Schemes

| HIGHWAY SCHEME                                       |
|------------------------------------------------------|
| A444 Whitley Interchange / Leaf Lane                 |
| A46/A428 & Sow Valley Link Road Grade Separations    |
| A46/A428 Junction Signalisation                      |
| North-West Link Road (Keresley)                      |
| Friargate                                            |
| Eastern Green Grade Separated Junction               |
| Broad Lane / Tile Hill Junctions                     |
| Stoneleigh Road/Kenilworth Road                      |
| A4600 Hospital                                       |
| Coventry South West Improvements (Warwick University |
| area)                                                |
| A46 / Stoneleigh Rd Junction                         |
| A45 / Leamington Rd                                  |
| A444 / Holbrook Way                                  |
| A444 / Foleshill Rd                                  |
| A444 / Bell Green Rd                                 |
| A444 / Binley Rd                                     |
| Paragon Park Accesses                                |
| Whitley South                                        |
| Ring Road Junction 1                                 |
| Ring Road Junction 2                                 |
| Ring Road Junction 4                                 |

### **PUBLIC TRANSPORT**

4.2.2 The basis for the public transport network was the 2034 CASM HE Forecast Model, which included the public transport schemes presented in Table 4.2.

**Table 4.2: Public Transport Schemes** 

| PUBLIC TRANSPORT SCHEME                            |
|----------------------------------------------------|
| NUCKLE Phase 1: Coventry to Nuneaton (including    |
| new stations at Bermuda Park and Ricoh Arena)      |
| Leamington –Coventry NUCKLE (Shuttle Train)        |
| Leamington-Coventry NUCKLE (Cross Country Route    |
| Alteration) including a new station at Kenilworth  |
| Coventry Railway Masterplan including Warwick Road |
| access                                             |
| X12 bus route improvements as provided by West     |
| Midlands Combined Authority (WMCA)                 |
|                                                    |

4.2.6 In addition to this CCC confirmed that the public transport improvements which would service the large developments of Keresley, Eastern Green, Kings Hill and Walsgrave would be a diversion of existing bus services to serve the development. This improvement was incorporated into the CASM PTAM. In reality the Local Plan promotes new and improved public transport provisions within these developments including opportunities for Rapid Transit connections, park and ride facilities and an additional rail station at Kings Hill. The approach taken in the CASM transport model therefore should be considered a worst case scenario in this respect.

### 4.3 SCENARIO 2

### **HIGHWAY**

- 4.3.1 The CASM 2034 Local Plan Scenario 1 highway network has been used as a basis for developing Scenario 2. The only change to the highway network was the removal of the proposed Keresley Link Road, as with only 800 houses at Keresley the Link Road would not be required.
- 4.3.2 Figure 4.1 shows the coding of the Scenario 1 with the Keresley Link Road (blue lines). Figure 4.2 shows the coding of the Scenario 2 without the Keresley Link Road. It should be stressed that at this time the proposed route of the Link Road is indicative and reflects the start and end points defined in the Coventry Local Plan. The exact route may differ slightly but the route contained within CASM does provide us with an appropriate proposal for the purposes of the modelling.




Figure 4.1: Scenario 1 - Highway Infrastructure - Keresley



Figure 4.2: Scenario 2 - Highway Infrastructure - Keresley

### **PUBLIC TRANSPORT**

4.3.3 The only change in the public transport network was the removal of the diverted bus services to the Keresley development, keeping the connections to the 800 houses which have planning permission.

### 4.4 SCENARIO 3

### **HIGHWAY**

- 4.4.1 The CASM 2034 Local Plan Scenario 1 highway network has been used as a basis for developing Scenario 3. The only change to the highway network was the removal of the proposed Eastern Green highway network.
- Figure 4.3 shows the coding of the Scenario 1 with the new grade-separated junction at Eastern Green (blue lines). Figure 4.4 shows the coding of the Scenario 3 without the grade-separated junction at Eastern Green.

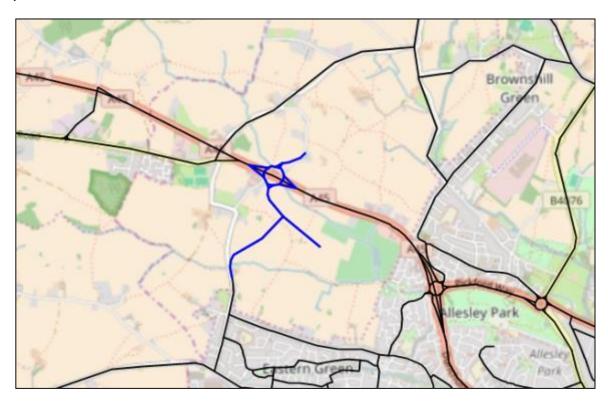



Figure 4.3: Scenario 1 - Highway Infrastructure - Eastern Green



Figure 4.4: Scenario 3 - Highway Infrastructure - Eastern Green

### **PUBLIC TRANSPORT**

The only change in the public transport network was the removal of the diverted bus services to the Eastern Green development.

### 4.5 SCENARIO 4

4.5.1 There are no changes in the highway or public transport network associated with the Cromwell Lane development.

# 5 LOCAL PLAN SCENARIO 1 RESULTS

### 5.1 INTRODUCTION

- 5.1.1 This chapter presents the results of the 2034 CASM Local Plan Scenario 1 and compares them to the 2013 CASM base year models in terms of changes to:
  - → Total population
  - → Trip generation over a 12-hour period
  - Mode choice
  - → Peak hour highway network performance
- 5.1.2 The changes have focused on the Coventry Local Authority area and therefore all changes outside this area are not presented in the illustrations.
- 5.1.3 In addition, the three local plan sites are interrogated in more detail to understand the origins and destination of these trips. Chapters 6 to 8 then go into greater detail into the traffic impacts of the individual sites.

### 5.2 POPULATION GROWTH

The increase in residential development outlined in Chapter 3, section 3.2, is converted into population using the number of people per dwelling derived from 2011 census data for the Coventry Local Authority area and fed into the CASM TDM. The increases in population in 2034 Local Plan Scenario 1 compared to 2013 are shown graphically in Figure 5.1. When compared to Figure 3.1, it is clear that areas where specific development has been located correlate to an increase in population within the 2034 CASM TDM. This implies that the growth in residential development has been fed into the CASM TDM accurately and provides a clear geographical pattern of the areas where population is increasing the most. Key developments can be identified including Keresley, Eastern Green and Walsgrave. There is also a general increase in population across Coventry which is a result of the general increase in population that is occurring. This is the Coventry Local Plan growth which is not accounted for by the development proposals and applied as growth spread across the Local Authority area.

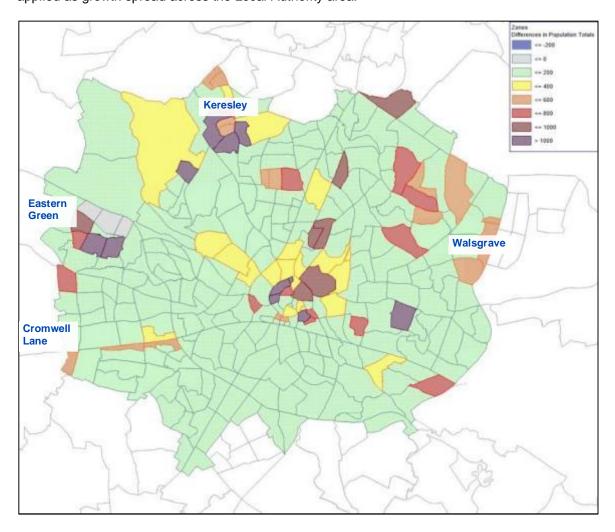



Figure 5.1: Changes in Total Population in Coventry Local Authority Area between 2034 Local Plan Scenario 1 and 2013 Base Year

The population growth for Coventry Local Authority area from the 2013 base year population by person type is outlined in Table 5.1. Overall within Coventry Local Authority area there is an increase in population by 62,000, an increase of 19% compared to 2013. The total numbers of employed and non-employed adults increase by 14% and 21% with children and retired persons increasing between 21% and 23%. The changes in population are in line with DfT forecasts for Coventry Local Authority area within the National Trip End Model (NTEM) 6.2, used in the development of the 2034 CASM Local Plan scenarios.

Table 5.1: Changes in Total Population in the Coventry Local Authority between 2034 Local Plan Scenario 1 and 2013 Base Year

| Population                 | 2013 BASE YEAR<br>POPULATION | 2034 LOCAL PLAN<br>SCENARIO 1<br>POPULATION | TOTAL DIFFERENCE | % DIFFERENCE |
|----------------------------|------------------------------|---------------------------------------------|------------------|--------------|
| Children (0-18)            | 69,210                       | 84,579                                      | 15,369           | 22%          |
| Employed Adults<br>(17-74) | 133,981                      | 153,019                                     | 19,038           | 14%          |
| Non Employed               |                              |                                             |                  |              |
| Adults (17-74)             | 74,537                       | 90,530                                      | 15,993           | 21%          |
| Retired (75+)              | 52,051                       | 64,015                                      | 11,964           | 23%          |
| Total                      | 329,779                      | 392,142                                     | 62,363           | 19%          |

### 5.3 EMPLOYMENT AND SCHOOLS GROWTH

- The workplace employment growth outlined in Chapter 3, section 3.3 is represented in the CASM TDM as increases in jobs. Jobs within the CASM TDM identify areas which work and employer business trips travel to and from. The changes shown in Figure 5.2; reflect the total workplace employment growth in Scenario 1 in the main employment growth centres of:
  - Eastern Green SUE
  - → Whitley/ Whitley East (CCC allocation)
  - Friargate

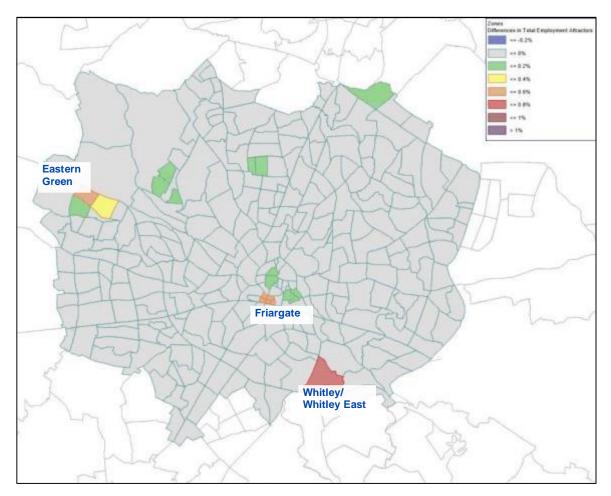



Figure 5.2: Changes in Total Employment in Coventry Local Authority between 2034 Local Plan Scenario 1 and 2013 Base Year

- The growth in schools outlined in Chapter 3, Section 3.4 is represented in the CASM TDM as increases in pupils. Pupil numbers within the CASM TDM identify areas which education trips travel to and from. The changes in pupil numbers shown by education level in Figure 5.3 reflect the growth in schools in Scenario 1. The growth is located at:
  - → Two-form entry primary schools in Keresley, Eastern Green, and Kings Hill
  - → Eight-form secondary school in Keresley

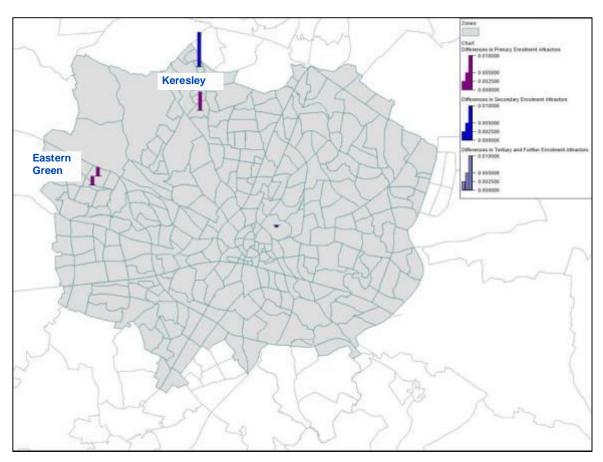



Figure 5.3: Changes in Schools in Coventry Local Authority Area between 2034 Local Plan Scenario 1 and 2013 Base Year

## 5.4 TRIP GENERATION

5.4.1 The increase in total population illustrated in Figure 5.1 is translated into an increase in the total number of trips generated in the 2034 Scenario 1 CASM TDM over a 12-hour period, as shown in Figure 5.4. The trip generation assumptions are by person type and trip purpose for a 12-hour period and were generated as part of the CASM TDM development. More details on this can be found within the CASM TDM Development and Calibration Report, October 2016.

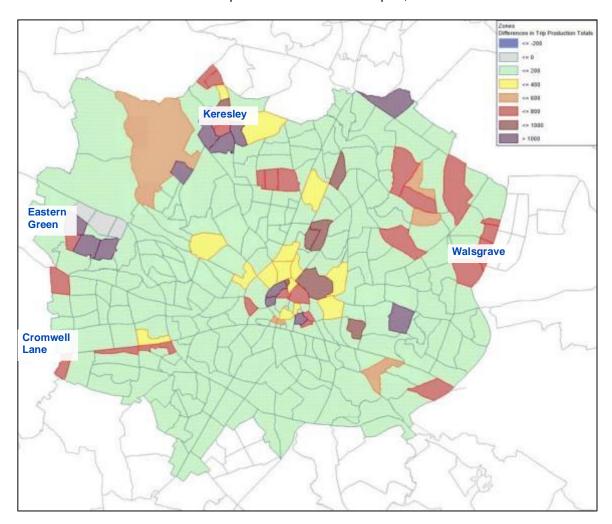



Figure 5.4: Changes in Total Trip Productions in Coventry Local Authority between 2034 Local Plan Scenario 1 and the 2013 Base Year

- 5.4.2 The figure above clearly shows the locations of the key proposed residential developments in the Coventry Local Plan including:
  - → Walsgrave
  - Eastern Green
  - Keresley
  - Cromwell Lane

- 5.4.3 The changes in total trip productions by purpose in the Coventry Local Authority area are outlined in Table 5.2. In percentage terms, these changes are consistent with the changes in total population by segment relative:
  - → The higher increase in retired people translates into a higher increase in home-based shopping (HBSh), home-based other (HBO), and non-home-based other (NHBO) trips
  - → The higher increase in children and further enrolment of students translates into a higher increase in home-based education (HBEd) trips
  - → The marginally lower increase in employed adults translates into a marginally lower increase in home-based work (HBW), home-based employer's business (HBEB), and non-home-based employer's business (NHBEB) trips

Table 5.2: Changes in Total Trips by Purpose in Coventry Local Authority between 2034 Local Plan Scenario 1 and 2013 Base Year

| TRIP PURPOSES | 2013 Base Year<br>TRIPS | 2034 LOCAL PLAN<br>SCENARIO 1 TRIPS | Total Difference | % DIFFERENCE |
|---------------|-------------------------|-------------------------------------|------------------|--------------|
| HBW           | 91,525                  | 104,732                             | 13,207           | 14%          |
| HBEB          | 11,716                  | 13,629                              | 1,913            | 16%          |
| HBEd          | 87,168                  | 105,433                             | 18,265           | 21%          |
| HBO           | 63,041                  | 75,446                              | 12,404           | 20%          |
| HBSh          | 50,039                  | 59,817                              | 9,778            | 20%          |
| NHBEB         | 8,381                   | 9,597                               | 1,215            | 15%          |
| NHBO          | 58,554                  | 69,498                              | 10,944           | 19%          |
| Total         | 370,425                 | 438,150                             | 67,726           | 18%          |

#### 5.5 MODE CHOICE

As a result of the mode choice stage in the CASM TDM, the total trips resulting from the trip generation stage are split by travel mode. The choice of travel mode within the CASM TDM is calculated by using the cost of travelling by car, public transport, walk and cycle from the starting location. The changes in total trips by mode in the Coventry Local Authority area are shown in Figure 5.5. Absolute values that are less than 100 trips have been hidden.

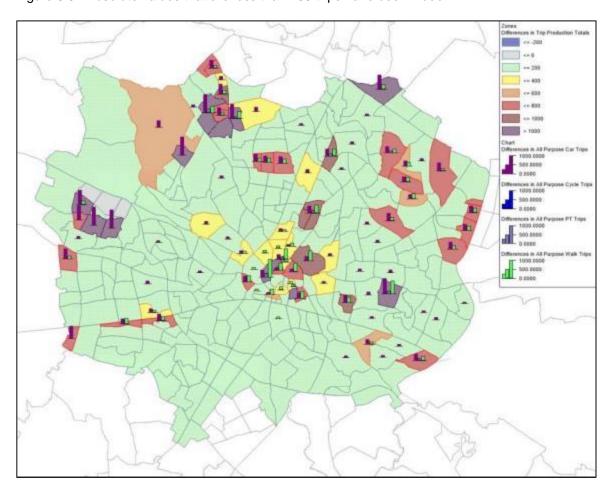



Figure 5.5 : Changes in Total Trips by Mode in Coventry Local Authority between 2034 Local Plan Scenario 1 and 2013 Base Year (person trips per 12-hour weekday)

- There is a clear pattern in Figure 5.5 which shows that in the proposed areas of development around the outskirts of Coventry, the main mode for travel is by car. This can be seen for Walsgrave, Eastern Green, Cromwell Lane and Keresley developments. This is because public transport services included within the CASM model for these areas is limited to existing services, and therefore it is expected that the public transport use for the sites will be low.
- 5.5.3 If there were more dedicated public transport services from these sites to the city centre, assuming people wish to travel into the city centre, it would make public transport a more attractive mode of travel. Proposed developments closer to the city centre show that there is a greater use of public transport, cycling and walking. This is an intuitive response from the CASM TDM as there is greater accessibility to public transport in this area.

## 5.6 TRIP DISTRIBUTION

- Trip distribution describes the origins and destinations of car trips travelling within the CASM model. Within the AM (8:00-9:00) and PM (17:00-18:00) peak hour CASM Highway Assignment Model (HAM), the distribution of trips travelling to and from Coventry Local Authority in 2034 Scenario 1 as well as the trips travelling within Coventry were assessed to see how they have changed between 2013 and 2034 Scenario 1. For the purpose of this assessment the following areas have been defined:
  - Coventry
  - Warwickshire
  - Leicestershire
  - Birmingham and Solihull
  - → Rest of the UK
- 5.6.2 These are presented graphically in Figure 5.6.

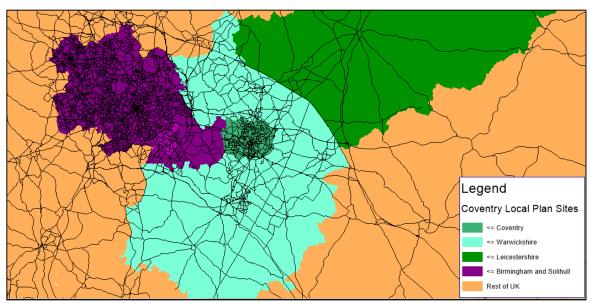



Figure 5.6: Coventry Areas for Trip Distribution

5.6.3 Table 5.3 presents the car trips leaving Coventry in the AM and PM peak and where they travel to within the CASM HAM.

**Table 5.3: Trip Distribution of Car Trips Travelling from Coventry** 

|                       |                | AM Peak               |                        | PM Peak |     |                        |  |
|-----------------------|----------------|-----------------------|------------------------|---------|-----|------------------------|--|
|                       | 2013 All Trips | 2034 Sc1<br>All Trips | 2034-2013<br>New Trips | 1       | 1   | 2034-2013<br>New Trips |  |
| Coventry              | 72%            | 70%                   | 66%                    | 65%     | 66% | 71%                    |  |
| Warwickshire          | 17%            | 18%                   | 20%                    | 21%     | 20% | 15%                    |  |
| Leicestershire        | 2%             | 2%                    | 2%                     | 3%      | 3%  | 2%                     |  |
| Birmingham & Solihull | 4%             | 5%                    | 7%                     | 6%      | 6%  | 5%                     |  |
| Rest of UK            | 5%             | 5%                    | 6%                     | 6%      | 6%  | 7%                     |  |

- Table 5.3 shows that of car trips leaving Coventry in the AM peak the majority of them in 2013 and 2034 Scenario 1 remain within Coventry. Of the new car trips which are generated between 2013 and 2034 there is still a high proportion of trips that start and finish their journey in Coventry though a slight reduction compared to 2013 levels. There is also an increase in the proportion of car trips travelling to Warwickshire, Birmingham and Solihull and the rest of the UK. In the PM peak in 2034 there is a greater proportion of trips leaving Coventry and staying within Coventry, with 71% of new trips remaining in Coventry. With the new PM peak car trips there is a reduction in the proportion that leaves Coventry and travesl to Warwickshire, Leicestershire and Birmingham and Solihull.
- 5.6.5 Table 5.4 presents the car trips travelling to Coventry in the AM and PM peak and where they travel from within the CASM HAM.

Table 5.4: Trip Distribution of Car Trips Travelling to Coventry

|                       |                | AM Peak               |                        | PM Peak |     |                        |  |
|-----------------------|----------------|-----------------------|------------------------|---------|-----|------------------------|--|
|                       | 2013 All Trips | 2034 Sc1<br>All Trips | 2034-2013<br>New Trips | 1       |     | 2034-2013<br>New Trips |  |
| Coventry              | 66%            | 67%                   | 72%                    | 71%     | 68% | 67%                    |  |
| Warwickshire          | 22%            | 21%                   | 16%                    | 18%     | 18% | 21%                    |  |
| Leicestershire        | 2%             | 2%                    | 2%                     | 2%      | 2%  | 2%                     |  |
| Birmingham & Solihull | 5%             | 5%                    | 4%                     | 4%      | 4%  | 6%                     |  |
| Rest of UK            | 5%             | 6%                    | 7%                     | 5%      | 5%  | 5%                     |  |

- Table 5.4 shows that in the AM peak, 72% of the new trips generated between 2013 and 2034 that are travelling to Coventry start their journey in Coventry. The proportion of trips travelling to Coventry from Warwickshire decreases slightly and trips from other areas remain a similar proportion. In the PM peak the proportion of new car trips travelling to Coventry slightly reduces compared to 2013 proportions and the percentage travelling to Coventry from Warwickshire increases.
- 5.6.7 Overall this analysis shows that the proportion of car trips travelling away from Coventry in the AM peak has increased, along with the car trips travelling to Coventry in the PM peak. This suggests more out commuting from Coventry to other areas. However the proportion of car trips travelling to Coventry in the AM Peak and from Coventry in the PM peak reduces.
- 5.6.8 To understand the movement changes within Coventry itself, trips within Coventry have been split into the following areas:
  - Coventry Central
  - Coventry NE
  - Coventry NW
  - Coventry SW
  - Coventry SE

### 5.6.9 These are presented Figure 5.7.

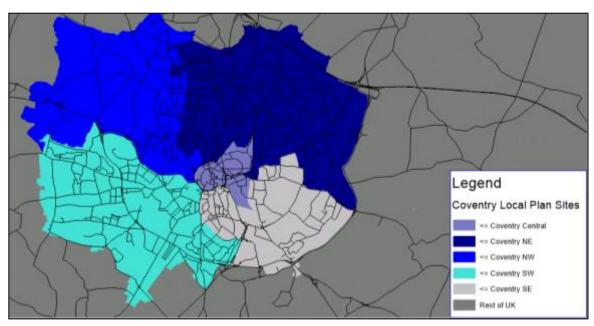



Figure 5.7: Coventry Local Authority Areas for Trip Distribution

Table 5.5 presents the car trips leaving the specific Coventry areas in the AM and PM peak and where they travel to within the CASM HAM.

Table 5.5: Trip Distribution of Car Trips Travelling from Specific Coventry Areas

|                  |                | AM Peak               |                        | PM Peak           |     |                        |  |
|------------------|----------------|-----------------------|------------------------|-------------------|-----|------------------------|--|
|                  | 2013 All Trips | 2034 Sc1<br>All Trips | 2034-2013<br>New Trips | 2013 All<br>Trips | !   | 2034-2013<br>New Trips |  |
| Coventry Central | 7%             | 8%                    | 11%                    | 15%               | 13% | 7%                     |  |
| Coventry NE      | 37%            | 36%                   | 31%                    | 41%               | 36% | 18%                    |  |
| Coventry NW      | 12%            | 14%                   | 21%                    | 10%               | 13% | 21%                    |  |
| Coventry SW      | 27%            | 25%                   | 19%                    | 24%               | 23% | 22%                    |  |
| Coventry SE      | 16%            | 17%                   | 18%                    | 16%               | 19% | 28%                    |  |

Table 5.5 shows that in the AM peak there is a greater proportion of new car trips starting in Coventry Central and Coventry NW, which is where quite a lot of housing development is located; Keresley and Eastern Green fall into Coventry NW. In the PM peak as in the AM peak, there is a greater proportion of trips starting within Coventry NW and also Coventry SE. Coventry SE is where the proposed employment site of Whitley/ Whitley East and Coventry NW is where the new jobs at Eastern Green are located; so an increase in trips travelling from these areas in the PM peak appears sensible as it would represent an increase in the number of people heading home from work.

Table 5.6 presents the car trips arriving in the specific Coventry areas in the AM and PM peak and where they travel from within the CASM HAM.

Table 5.6: Trip Distribution of Car Trips Travelling to Specific Coventry Areas

|                  |                                      | AM Peak |     | PM Peak           |                       |                        |  |
|------------------|--------------------------------------|---------|-----|-------------------|-----------------------|------------------------|--|
|                  | 2013 All Trips 2034 Sc1<br>All Trips |         |     | 2013 All<br>Trips | 2034 Sc1<br>All Trips | 2034-2013<br>New Trips |  |
| Coventry Central | 16%                                  | 15%     | 12% | 11%               | 11%                   | 12%                    |  |
| Coventry NE      | 36%                                  | 32%     | 19% | 40%               | 36%                   | 26%                    |  |
| Coventry NW      | 9%                                   | 12%     | 20% | 12%               | 15%                   | 23%                    |  |
| Coventry SW      | 25%                                  | 24%     | 22% | 27%               | 25%                   | 19%                    |  |
| Coventry SE      | 14%                                  | 17%     | 27% | 17%               | 17%                   | 16%                    |  |

- Table 5.6 shows that in the AM peak there is a greater proportion of new car trips travelling to Coventry NW and Coventry SE, which, as mentioned previously is where some of the key new job sites are located. In the PM peak there is an increase in trips travelling to Coventry NW which is where some new housing sites like Eastern Green and Keresley are located with a proportional reduction in trips travelling to Coventry NE.
- 5.6.14 Overall the Coventry analysis indicates that there is an increase in the proportion of trips travelling from and to Coventry NW and Coventry SE as a result of the Coventry Local Plan proposals.

## 5.7 PEAK HOUR TRAFFIC

- 5.7.1 Overall there are increases in traffic on the highway network across Coventry Local Authority area within the 2034 Local Plan Scenario 1 compared to the 2013 Base Year.
- 5.7.2 Highway network statistics were extracted from the Scenario 1 and 2013 Base Year models, as shown in Table 5.7 and Table 5.8. As expected, the growth in traffic demand from 2013 to 2034 leads to increases in the total travel distance, time and highway network delay in both AM and PM peak hours. Highway network delay in particular increases by 3.9% per annum, over 21 years, in the AM peak and 2.9% in the PM peak between 2013 and 2034. The increase in traffic demand on the highway network results in a decrease in the average speed across the Coventry Local Authority area, of up to 3 kph.

Table 5.7: Highway Network Statistics 2034 Scenario 1 vs 2013 Base Year

|                                 |            |               | AM PEAK    |                 |                | PM PEAK |               |            |                 |                |
|---------------------------------|------------|---------------|------------|-----------------|----------------|---------|---------------|------------|-----------------|----------------|
| METRIC                          | 2013<br>BY | SCENARIO<br>1 | DIFFERENCE | %<br>DIFFERENCE | % PER<br>ANNUM | 2013 BY | SCENARIO<br>1 | DIFFERENCE | %<br>DIFFERENCE | % PER<br>ANNUM |
| LINK CRUISE<br>TIME (VEH/HRS)   | 8,613      | 11,370        | + 2,758    | 32%             | 1.5%           | 9,058   | 11,624        | + 2,566    | 28%             | 1.3%           |
| TOTAL TRAVEL TIME (VEH/HRS)     | 10,228     | 14,504        | + 4,275    | 42%             | 2.0%           | 10,741  | 14,441        | + 3,700    | 34%             | 1.6%           |
| TOTAL NETWORK DELAY (VEH/HRS)   | 2,012      | 3,640         | + 1,628    | 81%             | 3.9%           | 2,098   | 3,374         | + 1,276    | 61%             | 2.9%           |
| Total Travel DISTANCE (VEH/KMS) | 599,925    | 802,621       | + 202,696  | 34%             | 1.6%           | 630,139 | 822,924       | + 192,785  | 31%             | 1.5%           |
| AVERAGE<br>SPEED (KM/H)         | 58.7       | 55.3          | -3         | -6%             | -0.3%          | 58.7    | 57.0          | -2         | -3%             | -0.1%          |

5.7.3 These highway network statistics have also been produced as averages by vehicle. They show that the increase in network delay by vehicle equates to to 1.8% per annum in the AM peak and 1.3% per annum in the PM peak, with an average increase in delay of around 34 seconds in the AM peak and 25 seconds in the PM peak.

Table 5.8: Highway Network Statistics 2034 Scenario 1 vs 2013 Base Year Per Vehicle

|                                       |            |               | AM PEAK    |                 |                | PM PEAK |               |            |                 |                |
|---------------------------------------|------------|---------------|------------|-----------------|----------------|---------|---------------|------------|-----------------|----------------|
|                                       | 2013<br>BY | SCENARIO<br>1 | DIFFERENCE | %<br>DIFFERENCE | % PER<br>ANNUM | 2013 BY | SCENARIO<br>1 | DIFFERENCE | %<br>DIFFERENCE | % PER<br>ANNUM |
| AVERAGE LINK CRUISE TIME (SECONDS)    | 396        | 395           | 0.3        | -0.1%           | 0.0%           | 397     | 404           | 7.1        | 1.8%            | 0.1%           |
| AVERAGE TOTAL TRAVEL TIME (SECONDS)   | 470        | 504           | 34.4       | 7.3%            | 0.3%           | 471     | 503           | 31.4       | 6.7%            | 0.3%           |
| AVERAGE TOTAL NETWORK DELAY (SECONDS) | 92         | 127           | 34.1       | 36.9%           | 1.8%           | 92      | 117           | 25.4       | 27.6%           | 1.3%           |

5.7.4 The area from which these highway network statistics were extracted is shown in black in Figure 5.8.

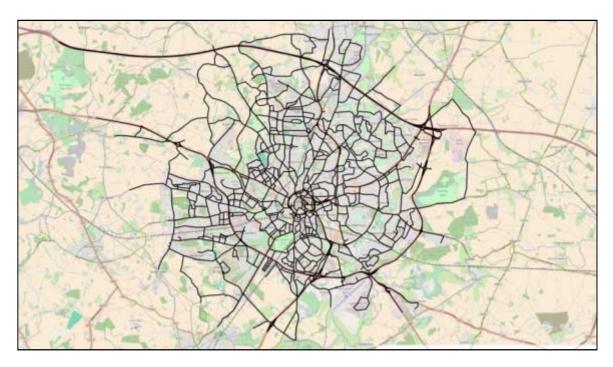



Figure 5.8: Coventry Local Authority Area Highway Network Statistics Area of Coverage

5.7.5 Within the highway network, in the CASM model, each road will have a volume of traffic travelling along it and a capacity, which represents the total number of vehicles that could possibly travel along the road. The Volume/Capacity (V/C) ratio provides an understanding as to the unused capacity on the road and is in effect a measure of how congested a road could be. A V/C of under 90% indicates an acceptable level of spare capacity on the highway network, anything over 90% should be investigated in more detail. Figure 5.9 to Figure 5.13 present the V/C plots for both the 2013 Base Year and 2034 Scenario 1 for the AM and PM peak hours, along with the differences occurring between 2013 and 2034 Scenario 1. These figures represent an



Figure 5.9: AM Peak 2013 Base Year V/C Ratio Plot



Figure 5.10: AM Peak 2034 Scenario 1 V/C Ratio Plot

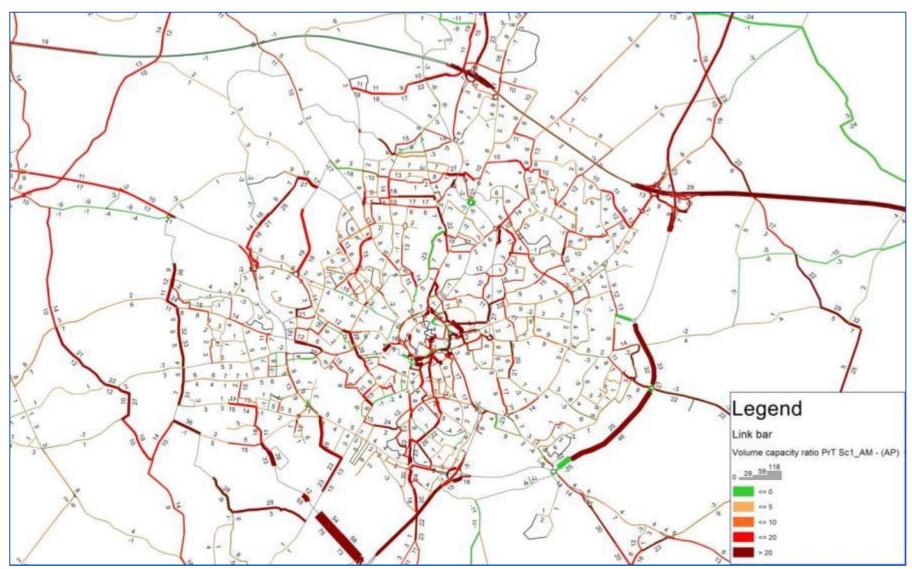



Figure 5.11: AM Peak 2013 Base Year vs Scenario 1 V/C Ratio Difference Plot

5.7.6 Figure 5.9 and Figure 5.10 show that generally there is an increase in the V/C ratio across Coventry Local Authority area in 2034 Scenario 1 as a result of the Coventry Local Plan and the general background growth in traffic in Coventry and the surrounding areas. Key areas where V/C increases are M6, A45/ A46 and key radial routes into Coventry city centre. Overall though the number of roads experiencing a V/C of greater than 90% is low. Figure 5.11 shows the difference in V/C ratio between the 2034 Scenario 1 and 2013 base year in the AM peak. The overall trend shows there is a reduction in V/C ratio across the Coventry area.



Figure 5.12: PM Peak 2013 Base Year V/C Ratio Plot



Figure 5.13: PM Peak 2034 Scenario 1 V/C Ratio Plot

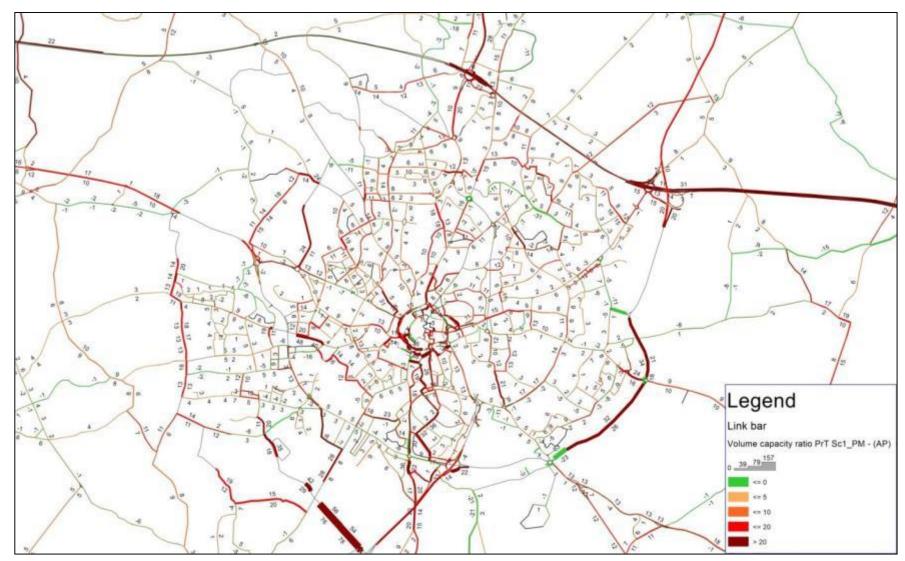



Figure 5.14: PM Peak 2013 Base Year vs Scenario 1 V/C Ratio Difference Plot

5.7.7 Figure 5.12 and Figure 5.13 show that generally there is an increase in the V/C ratio across Coventry Local Authority area in 2034 Scenario 1 as a result of the Coventry Local Plan and the general background growth in traffic in Coventry and the surrounding areas. Key areas where V/C increases are M6, A45/ A46 and key radial routes into Coventry city centre. Overall though the number of roads experiencing a V/C of greater than 90% is low. Figure 5.14 shows the difference in V/C ratio between the 2034 Scenario 1 and 2013 base year in the PM peak. The overall trend shows there is a reduction in V/C ratio across the Coventry area.

## 5.8 JUNCTION PERFORMANCE

5.8.1 The CASM HAM does not model highway junctions in detail, but it can highlight junctions which are experiencing more delay in the 2034 Local Plan Scenario 1 compared to the 2013 Base Year. Figure 5.15 illustrates the junction delay experienced in the AM peak 2013 CASM HAM highlighting the average delay in 20 second increments.

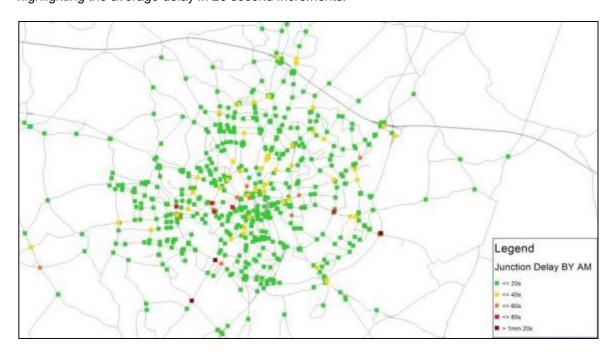



Figure 5.15: AM Peak 2013 Year Average Junction Delay

5.8.2 Figure 5.15 shows that in the base year the majority of junctions have an average delay of 20 seconds or less with a few junctions having more than 60 seconds average delay. These are generally located towards the south of the Local Authority area on key routes into and around Coventry.

5.8.3 Figure 5.16 shows the average delay in the AM peak for 2034 Scenario 1, with the Coventry Local Plan sites highlighted on it.

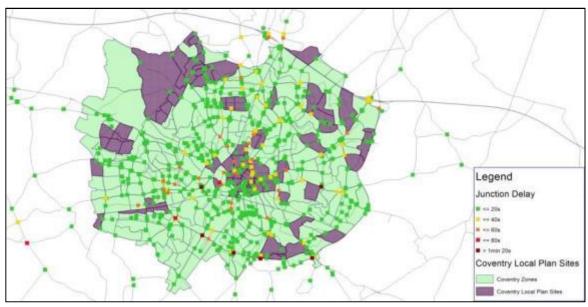



Figure 5.16: AM Peak 2034 Scenario 1 Average Junction Delay

- Figure 5.16 shows that the number of junctions which have over 1min 20seconds of delay has increased from 3 junctions in the base year to 6 junctions in 2034 Scenario 1 and these tend to be close to Coventry Local Plan sites. The junctions with high average delay are located towards the south and west of Coventry which is the area which is experiencing a higher proportion of car trips within 2034 Scenario 1. These junctions should be assessed as and when the proposed developments in the vicinity come forward for planning application, to ensure the junctions operate effectively with the proposed developments.
- 5.8.5 Figure 5.17 shows the differences in average delay in the AM peak between the 2034 Scenario 1 and the 2013 Base Year.

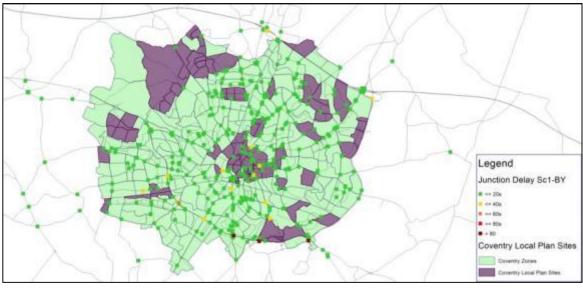



Figure 5.17: AM Peak 2034 Scenario 1 – 2013 Base Year Average Junction Delay

- Figure 5.17 illustrates similar patterns to the previous figures showing the impact of junction delay focused to the south and west of Coventry particularly along the A45 and its associated junctions. These should be assessed using detailed junction models as and when developments in the area come forward for planning applications.
- 5.8.7 Figure 5.18 illustrates the average junction delay experienced in the PM peak 2013 CASM HAM highlighting the average delay in 20 second increments.

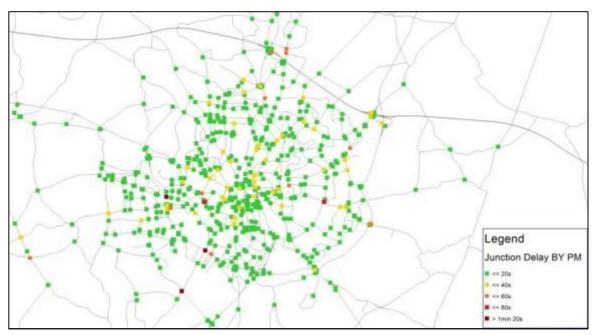



Figure 5.18: PM Peak Base Year Average Junction Delay

5.8.8 Figure 5.18 shows that in the base year the majority of junctions have a delay of 20 seconds or less with a handful having more than 60 seconds. These are generally located towards the south of the Local Authority area on key routes into and around Coventry. However there are some junctions with between 40 and 60 seconds delay to the north of Coventry close to the M6.

5.8.9 Figure 5.19 shows the average delay in the PM peak for 2034 Scenario 1, with the Coventry Local Plan sites highlighted on it.

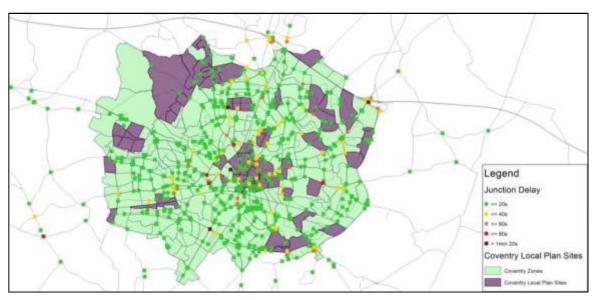



Figure 5.19: PM Peak 2034 Scenario 1 Average Junction Delay

- Figure 5.19 shows that the number of junctions which have over 1min 20seconds of average delay has increased from 3 junctions in the base year to 4 junctions in 2034 Scenario 1; these tend to be close to Coventry Local Plan sites. To ensure these junctions operate effectively in the future and are not significant problems when planning applications come forward in the area it will be necessary to undertake individual junction models to ensure congestion problems will not be generated. The junctions with high average delay are located across the Coventry area on key roads into and around Coventry, including the A45.
- 5.8.11 Figure 5.20 shows the differences in average delay in the PM peak between the 2034 Scenario 1 and the 2013 Base Year.

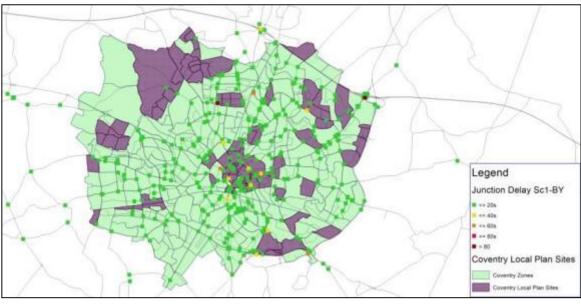



Figure 5.20: PM Peak 2034 Scenario 1 – 2013 Base Year Average Junction Delay

5.8.12 Figure 5.20 illustrates similar patterns to the previous figures showing the impact of junction delay focused to the south and west of Coventry particularly along the A45.

#### 5.9 SUMMARY

- 5.9.1 2034 Scenario 1 compared against the 2013 Base Year model within Coventry has the following impacts:
  - → 19% increase in population
  - → 18% increase in trips generated by all modes
  - Proposed developments close to the city centre have a greater proportion of trips being made by public transport, walking and cycling
  - Sites on the edge of the city centre generate predominantly car trips
  - → A greater proportion of trips starting in Coventry in the AM peak travel to areas outside of Coventry Local Authority
  - → A greater proportion of trips arriving in Coventry in the PM peak travel from areas outside of Coventry Local Authority
  - → An increase in the proportion of trips in Coventry travelling to/ from Coventry NW (Including Keresley and Eastern Green)
  - → An increase in the proportion of car trips travelling to Coventry SE (Whitley) in the AM peak and from Coventry SE in the PM peak
  - → 34% increase in vehicle/km's undertaken in Coventry which is a result of the increase in traffic as well as increases in distance travelled
  - Up to a 37% increase in highway network delay per vehicle, equating to up to 34 seconds
  - → A reduction in average speed of 3 kph
  - → Junctions which experience the most increase in delays are on key routes in and around Coventry, particularly on the A45 and around the M6. There are 3 junctions in the AM and 4 junction in the PM which experience increases of over 1min 20seconds between 2013 and 2034. These should be assessed using individual junction models as and when planning applications in the local area come forward.

# 6 LOCAL PLAN SCENARIO 2 RESULTS

## 6.1 INTRODUCTION

- 6.1.1 This chapter of the report presents the results of the 2034 CASM Local Plan Scenario 2 and compares them to the 2034 CASM Local Plan Scenario 1. The comparisons undertaken include changes in:
  - Population
  - → Trip generation over a 12-hour period
  - Mode choice
  - Peak hour highway network performance
- In addition to this the Keresley local plan site is interrogated in more detail to understand the impact this site has on the highway network within and around Coventry.

## 6.2 POPULATION CHANGES

6.2.1 The changes in population in 2034 Local Plan Scenario 2 compared to 2034 Local Plan Scenario 1 are graphically shown in Figure 6.1. This shows that the housing development from the Keresley area has been removed and as a result the growth in population has been spread across Coventry Local Authority area.

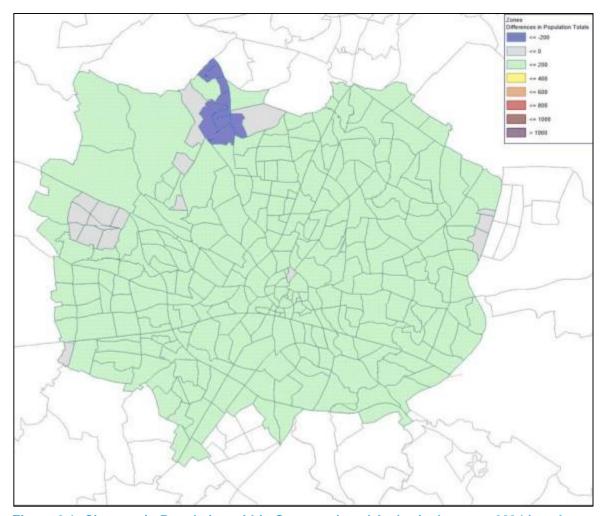



Figure 6.1: Changes in Population within Coventry Local Authority between 2034 Local Plan Scenario 2 and Scenario 1

# 6.3 SCHOOLS CHANGES

6.3.1 With the removal of the Keresley development the secondary school associated with the wider development is removed, as shown in Figure 6.2.

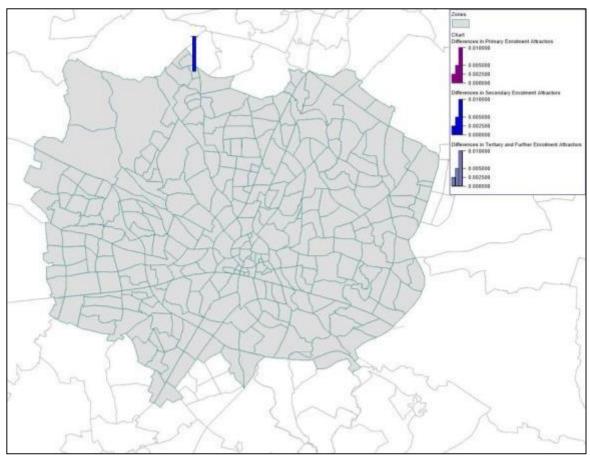



Figure 6.2: Changes in Schools by Education Level in Coventry Local Authority between 2034 Local Plan Scenario 2 and Scenario 1

# 6.4 TRIP GENERATION CHANGES

6.4.1 The changes in population illustrated in Figure 6.1 are translated into changes in the trips generated in the 2034 Scenario 2CASM TDM over a 12-hour period, as shown in Figure 6.3.

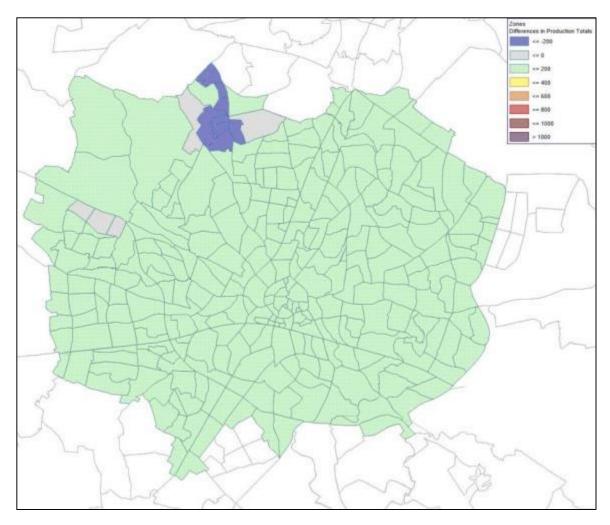



Figure 6.3: Changes in Total Trip Generations in Coventry Local Authority between 2034 Local Plan Scenario 2 and Scenario 1

## 6.5 MODE CHOICE

6.5.1 Figure 6.4 shows the change in mode choice between Scenario 1 and Scenario 2. It shows the reduction in travel demand in the Keresley area with increasing travel demand across Coventry Local Authority. The changes in modes at individual zone level are very small, with 2,300 houses spread across nearly 300 zones, i.e. approx. 7 new homes a zone.

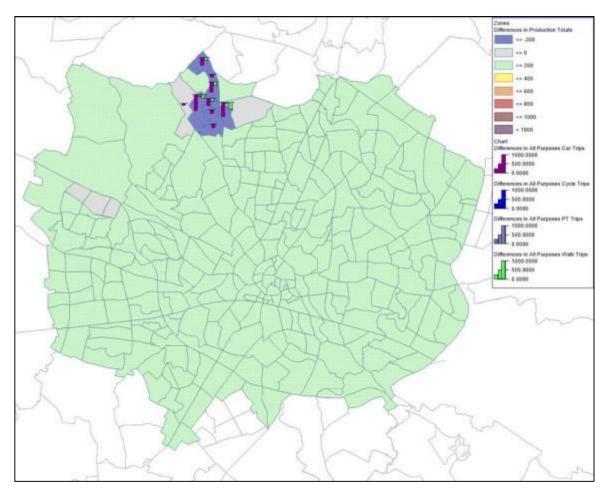



Figure 6.4: Changes in Total Trips by Mode in Coventry Local Authority between 2034 Local Plan Scenario 2 and Scenario 1 (person trips per 12-hour weekday)

# 6.6 TRIP DISTRIBUTION

The car trips travelling to and from the Keresley development as a percentage of the traffic flow on the highway network are shown below for the AM and PM peak, in Figure 6.5 and Figure 6.6, respectively.

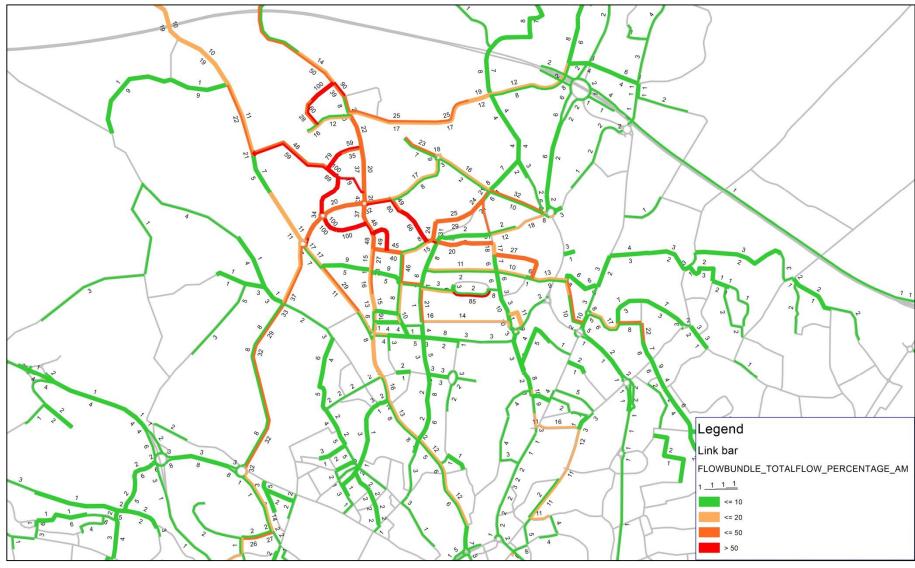



Figure 6.5: Scenario 1 AM Peak - Keresley Origin & Destination as a Percentage of the Total Traffic Flow on Network

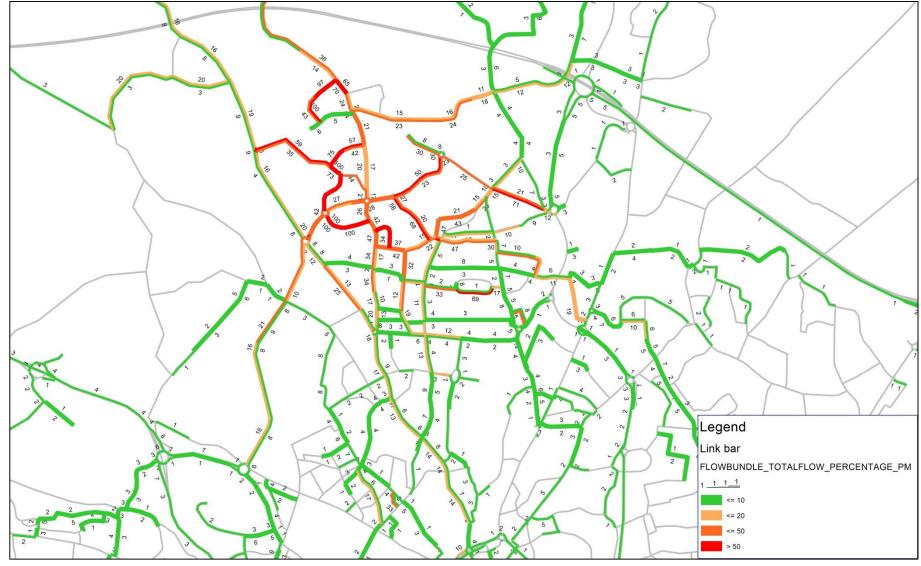



Figure 6.6: Scenario 1 PM Peak - Keresley Origin & Destination as a Percentage of the Total Traffic Flow on Network

Figure 6.5 and Figure 6.6 show the key routes that car trips to and from the development will use. The plots show that in both the AM and PM peak there is a strong draw of commuting trips southbound towards Coventry, northwards towards the M6 and westbound to Birmingham.

## 6.7 PEAK HOUR TRAFFIC

6.7.1 Highway network statistics have been extracted from the Scenario 1 and Scenario 2 models for the Coventry Local Authority area, as shown in Table 6.1. The highway network from which these statistics have been extracted is shown in Figure 5.8.

Table 6.1: Coventry Local Authority Highway Network Statistics Scenario 2 vs Scenario 1

|                                   |               | А             | M PEAK     |                 | PM PEAK       |               |            |              |
|-----------------------------------|---------------|---------------|------------|-----------------|---------------|---------------|------------|--------------|
| METRIC                            | SCENARIO<br>1 | SCENARIO<br>2 | DIFFERENCE | %<br>Difference | SCENARIO<br>1 | SCENARIO<br>2 | DIFFERENCE | % DIFFERENCE |
| LINK CRUISE<br>TIME<br>(VEH/HRS)  | 11,370        | 11,285        | - 85       | - 0.75%         | 11,624        | 11,555        | - 69       | - 0.59%      |
| TOTAL<br>TRAVEL TIME<br>(VEH/HRS) | 14,504        | 14,427        | - 76       | - 0.53%         | 14,441        | 14,356        | - 85       | - 0.59%      |
| TOTAL NETWORK DELAY (VEH/HRS)     | 3,640         | 3,652         | + 12       | + 0.34%         | 3,374         | 3,367         | - 8        | - 0.23%      |
| TOTAL TRAVEL DISTANCE (VEH/KMS)   | 802,621       | 798,614       | - 4,007    | - 0.50%         | 822,924       | 819,231       | - 3,693    | - 0.45%      |
| AVERAGE<br>SPEED<br>(KM/H)        | 55.3          | 55.4          | + 0.02     | + 0.03%         | 57.0          | 57.1          | + 0.08     | + 0.14%      |

6.7.2 The highway network statistics indicate that, between Scenario 1 and Scenario 2, the overall impact in the Coventry Local Authority area is very small. There are slight reductions in travel time and travel distance and slight increases in speed, but overall the additional houses at Keresley do not have a significant impact on the performance of the overall highway network in the Coventry Local Authority area.

6.7.3 Overall highway statistics were also extracted for a smaller area around the Keresley site, illustrated in Figure 6.7. Table 6.2 presents the comparisons of the highway statistics for this smaller area.

Table 6.2: Keresley Area Highway Network Statistics Scenario 2 vs Scenario 1

|                                        |               | А             | MPEAK      |                 | PM PEAK       |               |            |              |
|----------------------------------------|---------------|---------------|------------|-----------------|---------------|---------------|------------|--------------|
| METRIC                                 | SCENARIO<br>1 | SCENARIO<br>2 | DIFFERENCE | %<br>Difference | SCENARIO<br>1 | SCENARIO<br>2 | DIFFERENCE | % DIFFERENCE |
| LINK CRUISE<br>TIME<br>(VEH/HRS)       | 2,366         | 2,293         | -73        | -3%             | 2,475         | 2,413         | -62        | -3%          |
| TOTAL<br>TRAVEL TIME<br>(VEH/HRS)      | 3,115         | 3,025         | -91        | -3%             | 3,107         | 3,036         | -71        | -2%          |
| TOTAL<br>NETWORK<br>DELAY<br>(VEH/HRS) | 929           | 906           | -23        | -2%             | 829           | 813           | -17        | -2%          |
| TOTAL TRAVEL DISTANCE (VEH/KMS)        | 131,780       | 128,360       | -3,419     | -3%             | 138,256       | 135,106       | -3,150     | -2%          |
| AVERAGE<br>SPEED<br>(KM/H)             | 42.3          | 42.4          | 0          | 0%              | 44.5          | 44.5          | 0          | 0%           |

The highway network statistics show that without the Keresley development in the local area there is a reduction in network delay of up to 2% and a reduction in travel distance of up to 3%.

Average speed remains very similar in the area in both scenarios. This suggests that within the area assessed the full Keresley development does not have a significant impact on the performance of the local highway network.



Figure 6.7: Keresley Highway Network

6.7.5 Within the highway network, in the CASM model, each road will have a volume of traffic travelling along it and a capacity, which represents the total number of vehicles that could possibly travel along the road. The Volume/Capacity (V/C) ratio provides an understanding as to the unused capacity on the road; in effect this is a measure of how congested a road could be. Figure 6.8 and Figure 6.9 present the change in Volume/ Capacity between Scenario 1 and Scenario 2. These figures represent an average flow over a peak hour period; and therefore do not show spikes in congestion which happen within the hour.

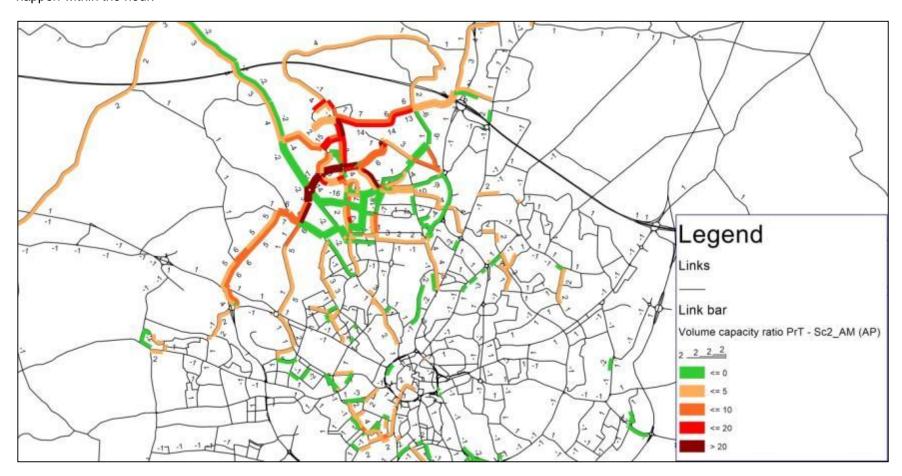



Figure 6.8: AM Peak Scenario 1 vs Scenario 2 V/C Ratio Difference Plot

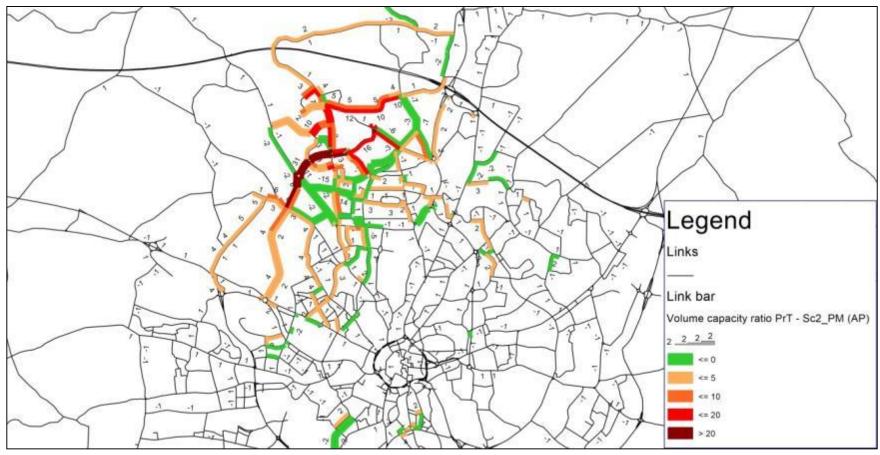



Figure 6.9: PM Peak Scenario 1 vs Scenario 2 V/C Ratio Difference Plot

The figures show that in Scenario 1, compared to Scenario 2, there is an increase in traffic going to the Keresley area from the A4114 and around the M6 junction 3. This is a result of the increased housing in Keresley in Scenario 1 which is generating and attracting new traffic into the area, resulting in slightly less spare capacity on the highway network. However on some of the highway network there is an improvement in V/C ratio as a result of Scenario 1, especially along Tamworth Road and Sandpits lane. This is a result of the Keresley Link Road which is built in Scenario 1 which traffic uses instead of the existing network.

6.7.7 Table 6.3 shows the Volume/ Capacity ratio for specific locations around the Keresley area, shown below in Figure 6.10.

Table 6.3: Volume/ Capacity Scenario 2 vs Scenario 1

| HIGHWAY          | DIRECTION |            | AM PEAK    |            | PM PEAK    |            |            |  |
|------------------|-----------|------------|------------|------------|------------|------------|------------|--|
| Network          | BIREOTION | SCENARIO 1 | SCENARIO 2 | DIFFERENCE | SCENARIO 1 | SCENARIO 2 | DIFFERENCE |  |
| Tamworth<br>Road | NB        | 18         | 20         | 2          | 19         | 21         | 2          |  |
|                  | SB        | 20         | 24         | 4          | 24         | 25         | 1          |  |
| SANDPITS         | EB        | 30         | 45         | 15         | 29         | 44         | 15         |  |
| LANE             | WB        | 16         | 41         | 25         | 23         | 43         | 20         |  |
| LONG LANE        | EB        | 54         | 51         | -3         | 63         | 48         | -15        |  |
| LONG LANE        | WB        | 61         | 48         | -13        | 50         | 50         | 0          |  |
| BENNETTS         | NB        | 20         | 11         | -9         | 36         | 24         | -12        |  |
| Road             | SB        | 47         | 34         | -13        | 30         | 22         | -8         |  |
| Keresley         | EB        | 27         |            |            | 31         |            |            |  |
| LINK ROAD        | WB        | 40         |            | _          | 28         |            | _          |  |

6.7.8 The table shows that the V/C is higher in Scenario 2 compared to Scenario 1 on Tamworth Road and Sandpits Lane. This is because in Scenario 1 despite there being more houses, the Keresley Link Road attracts traffic away from these routes. However, in Scenario 1 on Bennetts Road there is an increase in V/C as a result of the additional houses and car trips on this road; this is because quite a lot of the development to the north of Keresley connects directly onto Bennetts Road. Despite the increase however, the V/C is still relatively low and does not cause any significant concern.

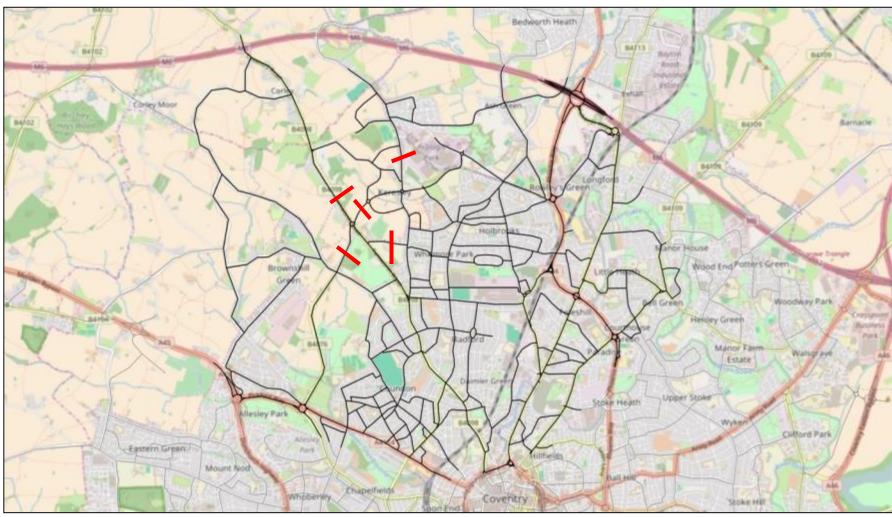



Figure 6.10: Locations for Keresley V/C Table

#### 6.8 JUNCTION PERFORMANCE

6.8.1 The CASM HAM does not model highway junctions in detail, but it can highlight junctions which are experiencing more delay in the 2034 Local Plan Scenario 1 compared to Scenario 2. Figure 6.11 illustrates the junction delay experienced in the AM peak 2034 Local Plan Scenario 1 highlighting the average delay in 20 second increments. Scenario 1 assumes the full Keresley build out of houses and the Keresley Link Road.

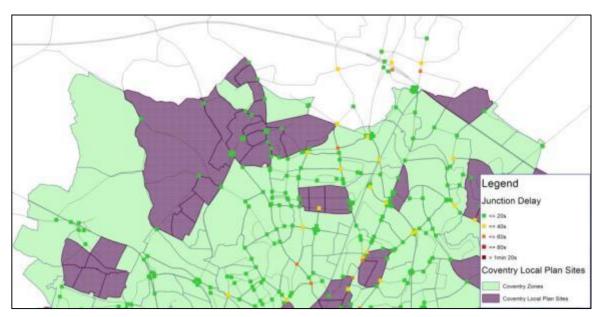



Figure 6.11: AM Peak 2034 Scenario 1 Average Junction Delay

6.8.2 Figure 6.11 shows that in Scenario1 in the Keresley area the majority of junctions have an average delay of 20 seconds or less with a handful having between 40 and 60 seconds delay close to the development and the M6 junction 3. This indicates that with the Keresley Link Road and the full Keresley site there are a few junctions which should be examined in detail to ensure they operate effectively with the proposals.

Figure 6.12 shows the junction performance in the AM peak with just the Keresley development which has planning permission and without the Keresley Link Road (Scenario 2).

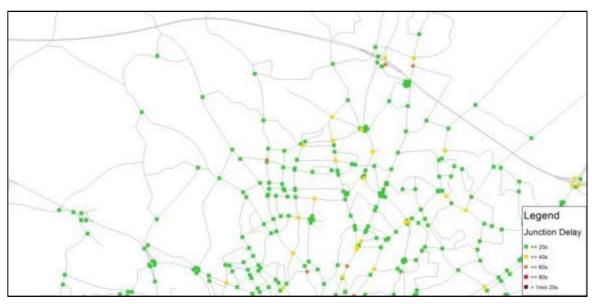



Figure 6.12: AM Peak 2034 Scenario 2 Average Junction Delay

- 6.8.4 Figure 6.12 shows that in Scenario 2 the junction with Sandpits Lane experiences between 40-60 seconds of delay but most other junctions in the area experience between 0-40 seconds of delay which are not of significant concern.
- 6.8.5 Figure 6.13 illustrates the junctions which experience an increase in average delay between Scenario 2 and 1. This shows that all increases in delay around Keresley with the Link Road are 20seconds or less which is not of significant concern. However it would be prudent to assess the localised impacts of the development within standalone junction models to ensure that they would still operate effectively as and when a planning application comes forward for the site.

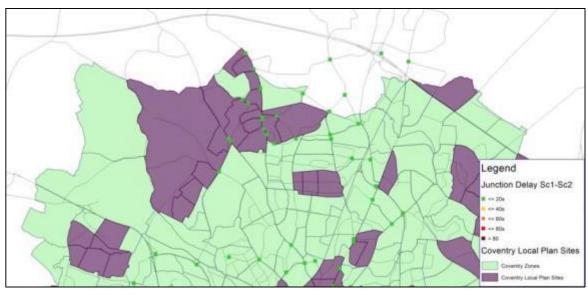



Figure 6.13: AM Peak 2034 Scenario 1 - Scenario 2 Average Junction Delay

Figure 6.14 illustrates the junction delay experienced in the PM peak 2034 Local Plan Scenario 1 highlighting the average delay in 20 second increments.

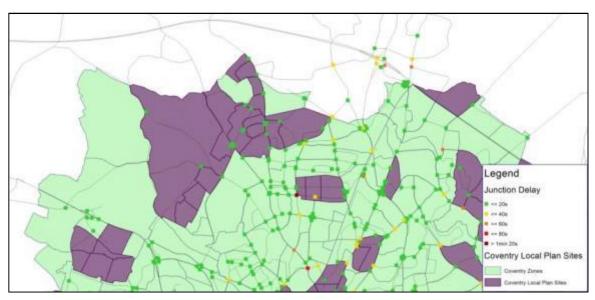



Figure 6.14: PM Peak 2034 Scenario 1 Average Junction Delay

- 6.8.7 Figure 6.14 shows that in Scenario1 in the Keresley area the majority of junctions have an average delay of 20 seconds or less with a handful having between 40 and 60 seconds close to the development and the M6 junction 3. This indicates that with the Keresley Link Road and the full Keresley site there are a few junctions which would be worth further assessment to ensure they operate effectively with the proposals.
- 6.8.8 Figure 6.15 shows the junction performance in the PM peak with just the Keresley development which has planning permission and without the Keresley Link Road (Scenario 2).

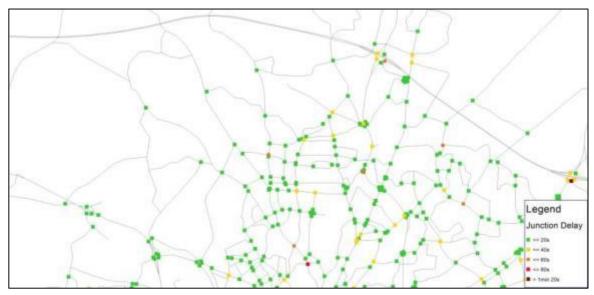



Figure 6.15: PM Peak 2034 Scenario 2 Average Junction Delay

6.8.9 Figure 6.15 shows that in Scenario 2 the junction with Sandpits Lane experiences between 40-60 seconds of delay but most other junctions in the area experience between 0-40 seconds of delay.

6.8.10 Figure 6.16 illustrates the junctions which experience an increase in delay between Scenario 2 and 1. This shows that all increases in delay around Keresley with the Link Road are 20 seconds or less which is not of significant concern. However it would be prudent to assess the localised impacts of the development within standalone junction models to ensure that they would still operate effectively.

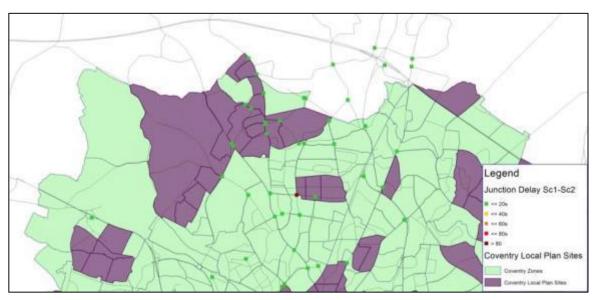



Figure 6.16: PM Peak 2034 Scenario 1 - Scenario 2 Average Junction Delay

#### 6.9 SUMMARY

- 6.9.1 2034 Scenario 2 compared against Scenario 1 within Coventry and the Keresley area has the following impacts:
  - Scenario 2 only has 800 houses at Keresley, additional houses and trips are spread across Coventry
  - → Key roads which cars use to and from Keresley include Bennetts Road and Tamworth Road which constitute up to 50% of development traffic in Scenario 1
  - → Overall highway network performance across Coventry is not significantly affected by the Keresley development
  - → In the Keresley area there is an increase in delay and travel distance as a result of Scenario 1, however average speeds remain similar
  - → As a result of the full Keresley development and the Link Road there is generally an increase in V/C ratio on roads leading to the development, however on Sandpits Lane and Tamworth Road V/C reduces as more traffic uses the new Link Road rather than the existing highway network
  - → There are some junctions around the Keresley area which experience an increase in delays as a result of the full Keresley development, these are relatively small
  - Additional junction modelling would be required to assess the localised impacts of the full Keresley development to ensure the junctions in the close vicinity operate well in the future.

# 7 LOCAL PLAN SCENARIO 3 RESULTS

## 7.1 INTRODUCTION

- 7.1.1 This chapter of the report presents the results of the 2034 CASM Local Plan Scenario 3 and compares them to the 2034 CASM Local Plan Scenario 1. The comparisons undertaken include changes in:
  - Population
  - → Trip generation over a 12-hour period
  - Mode choice
  - > Peak hour highway network performance
- 7.1.2 In addition to this the Eastern Green local plan site is interrogated in more detail to understand the impact this site has on the highway network within and around Coventry.

## 7.2 POPULATION CHANGES

7.2.1 The changes in population in 2034 Local Plan Scenario 3 compared to 2034 Local Plan Scenario 1 are graphically shown in Figure 7.1. This shows that the housing development from the Eastern Green area has been removed and as a result the growth in population has been spread across Coventry Local Authority area.

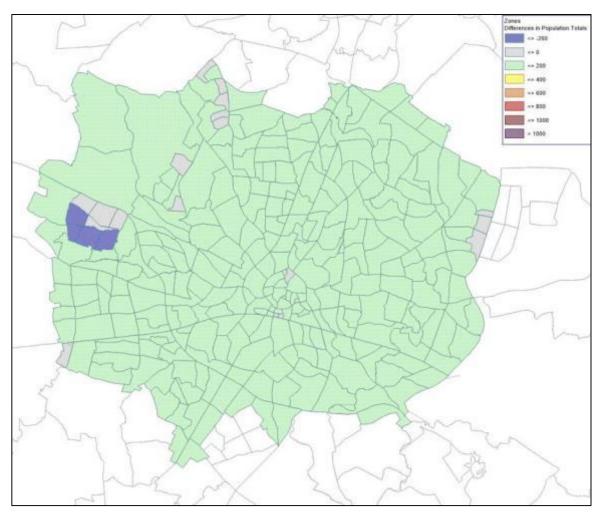



Figure 7.1: Changes in Population within Coventry Local Authority between 2034 Local Plan Scenario 3 and Scenario 1

# 7.3 EMPLOYMENT AND SCHOOL GROWTH

7.3.1 Figure 7.2 shows the changes in number of jobs in Scenario 3 compared to Scenario 1. The figure shows that the jobs associated with Eastern Green are removed and there is an overall increase in jobs across the Coventry Local Authority area.

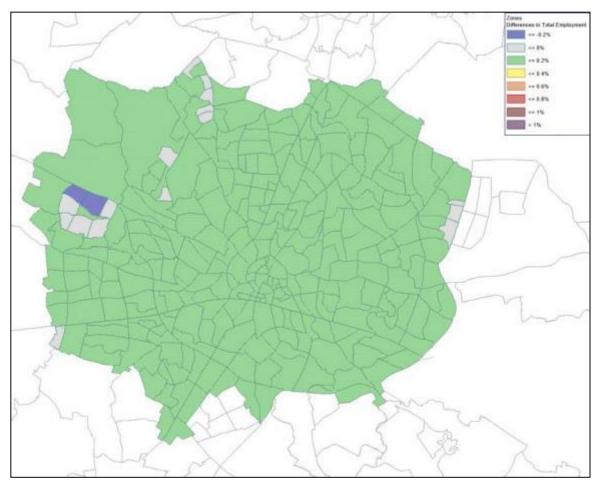



Figure 7.2: Changes in Total Employment in Coventry Local Authority between 2034 Local Plan Scenario 1 and Scenario 3

7.3.2 As a result of the Eastern Green development not being contained within Local Plan Scenario 3 the school associated with the proposed development has also been removed, as shown in Figure 7.3.

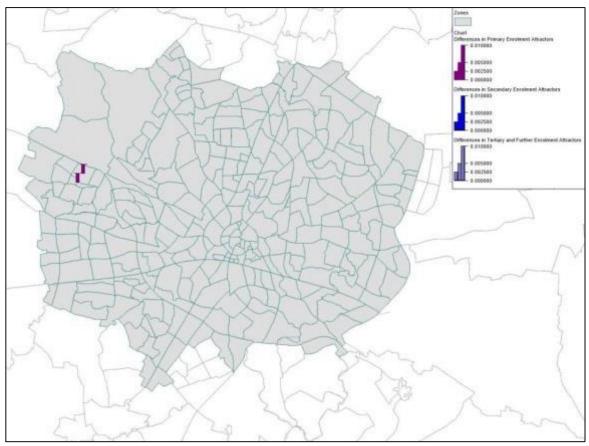



Figure 7.3: Changes in Schools by Education Level in Coventry Local Authority between 2034 Local Plan Scenario 3 and Scenario 1

#### 7.4 TRIP GENERATION CHANGES

The changes in population shown in Figure 7.1 are translated into changes in trips generated in the 2034 Scenario 3 CASM TDM over a 12-hour period, as shown in Figure 7.4.

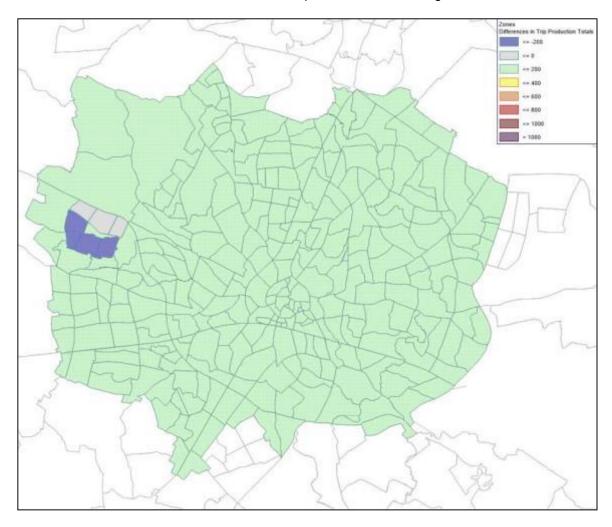



Figure 7.4: Changes in Total Trip Productions in Coventry Local Authority between 2034 Local Plan Scenario 3 and Scenario 1

#### 7.5 MODE CHOICE CHANGES

7.5.1 Figure 7.5 shows the change in mode choice between Scenario 1 and Scenario 3. It shows the reduction in travel demand in the Eastern Green area with increasing travel demand across Coventry Local Authority. The changes in modes at individual zone level are very small, with 2,250 houses and 4,250 jobs, spread across nearly 300 zones.

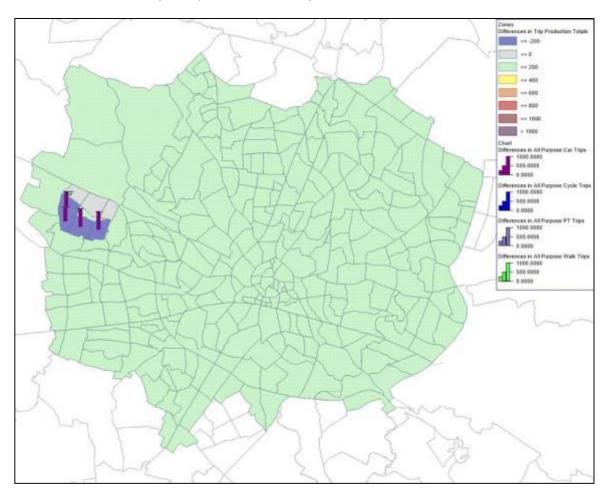



Figure 7.5 : Changes in Total Trip Productions by Mode in Coventry Local Authority between 2034 Local Plan Scenario 3 and Scenario 1

# 7.6 TRIP DISTRIBUTION

# 7.6.1 The trip distributions to and from the Eastern Green development are shown for the AM and PM peak, in Figure 7.6 and Figure 7.7, respectively.

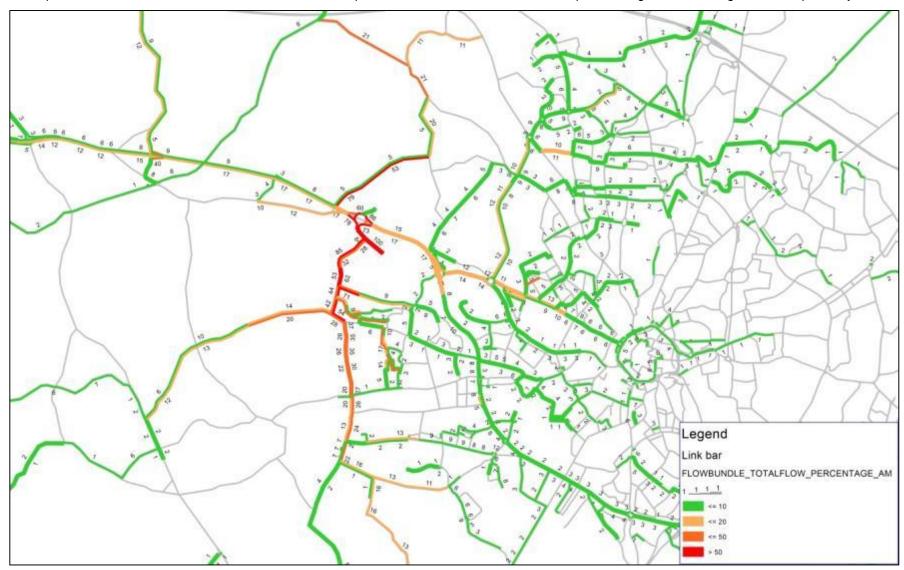



Figure 7.6: 2034 Scenario 1 AM Peak - Eastern Green Origin & Destinations as a Percentage of the Total Traffic Flow on Network

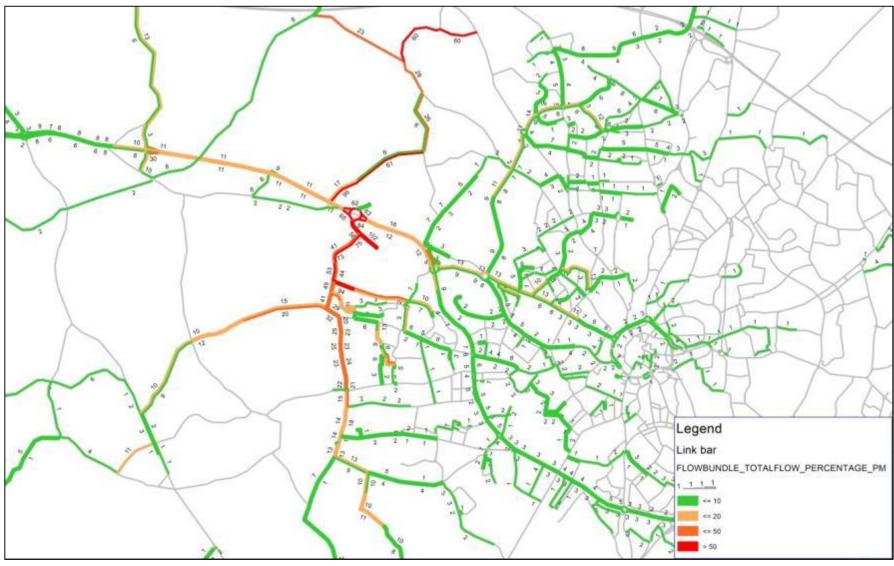



Figure 7.7: 2034 Scenario 1 PM Peak - Eastern Green Origin & Destinations as a Percentage of the Total Traffic Flow on Network

7.6.2 Figure 7.6 and Figure 7.7 show the key routes for car trips to and from the development. The plots show that in both the AM and PM peak there is a strong draw of commuting trips both westbound towards Birmingham, east towards Coventry and south towards Kenilworth.

#### 7.7 PEAK HOUR TRAFFIC

7.7.1 Highway network statistics have been extracted from the Scenario 1 and Scenario 3 models, as shown in Table 7.1, for the Coventry Local Authority area. The roads from which these statistics have been extracted have been illustrated previously in Chapter 5, within Figure 5.8.

Table 7.1: Coventry Local Authority Highway Network Statistics Scenario 3 vs Scenario 1

|                                        |               | A             | M PEAK     |              |               |               | PM PEAK    |              |
|----------------------------------------|---------------|---------------|------------|--------------|---------------|---------------|------------|--------------|
| METRIC                                 | SCENARIO<br>1 | SCENARIO<br>3 | DIFFERENCE | % DIFFERENCE | SCENARIO<br>1 | SCENARIO<br>3 | DIFFERENCE | % DIFFERENCE |
| LINK CRUISE<br>TIME<br>(VEH/HRS)       | 11,370        | 11,221        | - 149      | -1.31%       | 11,624        | 11,501        | - 123      | - 1.06%      |
| TOTAL TRAVEL TIME (VEH/HRS)            | 14,504        | 14,300        | - 203      | -1.40%       | 14,441        | 14,279        | - 162      | - 1.12%      |
| TOTAL<br>NETWORK<br>DELAY<br>(VEH/HRS) | 3,640         | 3,568         | - 72       | -1.98%       | 3,374         | 3,347         | - 27       | - 0.81%      |
| TOTAL TRAVEL DISTANCE (VEH/KMS)        | 802,621       | 790,701       | - 11,919   | -1.49%       | 822,924       | 811,834       | - 11,090   | - 1.35%      |
| AVERAGE<br>SPEED<br>(KM/H)             | 55.3          | 55.3          | - 0.046    | -0.08%       | 57.0          | 56.9          | - 0.13     | - 0.23%      |

7.7.2 The highway network statistics indicate that between Scenario 1 and Scenario 3, the overall impact in the Coventry Local Authority area is very small. There are slight reductions in travel time and travel distance in Scenario 3 and slight decreases in speed, but overall the additional homes and jobs at Eastern Green do not have a significant impact on the performance of the overall highway network in the Coventry Local Authority area.

7.7.3 Overall highway statistics were also extracted for a smaller area around the Eastern Green site, illustrated in Figure 7.8. Table 7.2 presents the comparisons of the highway statistics for this smaller area.

Table 7.2: Eastern Green Area Highway Network Statistics Scenario 3 vs Scenario 1

|                                   |               | А          | M PEAK     |              |               |               | PM PEAK    |              |
|-----------------------------------|---------------|------------|------------|--------------|---------------|---------------|------------|--------------|
| METRIC                            | SCENARIO<br>1 | SCENARIO 3 | DIFFERENCE | % DIFFERENCE | SCENARIO<br>1 | SCENARIO<br>3 | DIFFERENCE | % DIFFERENCE |
| LINK CRUISE<br>TIME<br>(VEH/HRS)  | 2,674         | 2,575      | -100       | -4%          | 2,772         | 2,699         | -73        | -3%          |
| TOTAL<br>TRAVEL TIME<br>(VEH/HRS) | 3,427         | 3,333      | -95        | -3%          | 3,388         | 3,298         | -90        | -3%          |
| TOTAL NETWORK DELAY (VEH/HRS)     | 908           | 893        | -15        | -2%          | 779           | 772           | -7         | -1%          |
| TOTAL TRAVEL DISTANCE (VEH/KMS)   | 155,152       | 148,330    | -6,822     | -4%          | 161,523       | 156,140       | -5,383     | -3%          |
| AVERAGE<br>SPEED<br>(KM/H)        | 45.3          | 44.5       | -1         | -2%          | 47.7          | 47.3          | -0         | -1%          |

7.7.4 The highway network statistics show that without the Eastern Green development in the local area there is a reduction in network delay of up to 2% and a reduction in travel distance, of up to 4%. Average speed reduces by just under 1 kph in the area in the AM peak. This suggests that within the area assessed the full Eastern Green development does not have significant impacts on the performance of the local highway network.



Figure 7.8: Eastern Green Highway Network

7.7.5 The difference in Volume/Capacity (V/C) Ratio on network links between Scenario 1 and Scenario 3 are shown below in Figure 7.9 and Figure 7.10. These difference plots illustrate that the capacity impacts on the network are quite localised. As the highway network around the proposed new grade separated junction is new, comparisons in this area against the base year are not possible, hence why they are blank in the figures below. Further on in this section the V/C ratios will be presented on the A45 with and without the Eastern Green development.

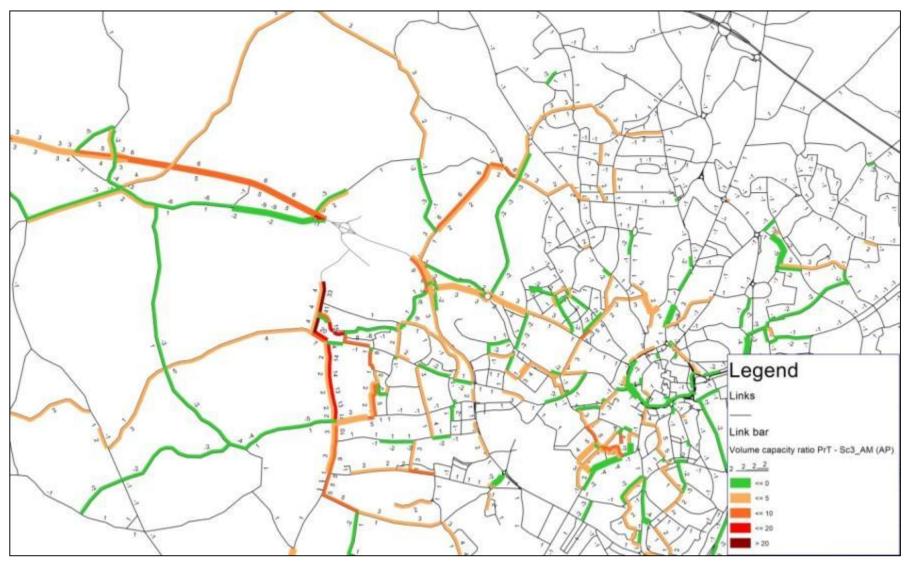



Figure 7.9: AM Peak Scenario 1 vs Scenario 3 V/C Ratio Difference Plot

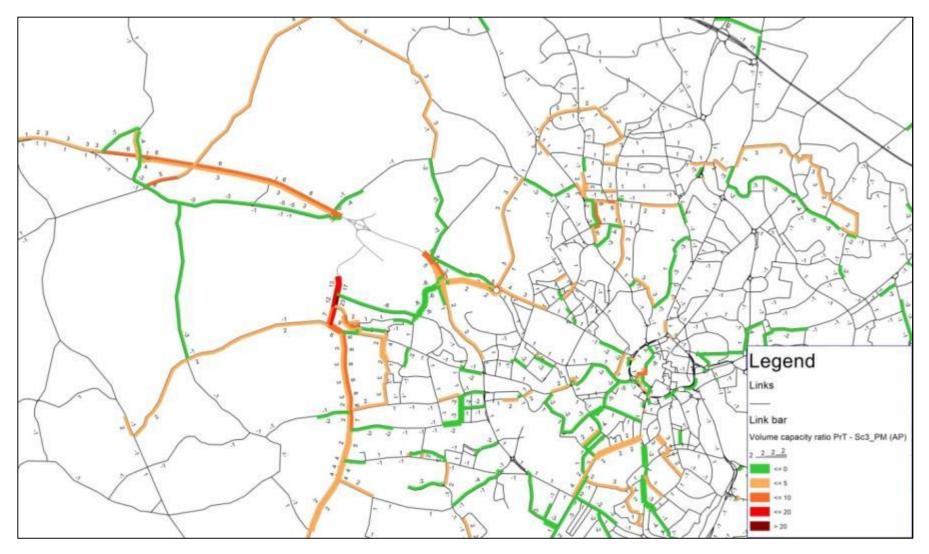



Figure 7.10: PM Peak Scenario 1 vs Scenario 3 V/C Ratio Difference Plot

7.7.6 Figure 7.9 and Figure 7.10 show that the greatest increase in V/C ratio occurs on Pickford Green Road and Banner Lane, with a smaller increase on the A45. Table 7.3 shows the Volume/Capacity ratio for specific locations around the Eastern Green area, shown in Figure 7.11.

Table 7.3: Volume/ Capacity Scenario 1 vs Scenario 3

| HIGHWAY            | DIRECTION |            | AM PEAK    |            |            | PM PEAK    |            |
|--------------------|-----------|------------|------------|------------|------------|------------|------------|
| <b>N</b> ETWORK    | DIRECTION | SCENARIO 1 | SCENARIO 3 | DIFFERENCE | SCENARIO 1 | SCENARIO 3 | DIFFERENCE |
| A45 East of<br>New | EB        | 58%        | 54%        | -4%        | 64%        | 56%        | -8%        |
| JUNCTION           | WB        | 66%        | 57%        | -9%        | 65%        | 60%        | -5%        |
| Pickford           | NB        | 20%        | 16%        | -4%        | 25%        | 13%        | -12%       |
| GREEN LANE         | SB        | 44%        | 11%        | -33%       | 35%        | 18%        | -17%       |
| A45 West of<br>New | EB        | 61%        | 55%        | -6%        | 60%        | 54%        | -6%        |
| JUNCTION           | WB        | 63%        | 58%        | -5%        | 59%        | 56%        | -3%        |
| Broad Lane         | EB        | 25%        | 17%        | -8%        | 14%        | 11%        | -3%        |
| DROAD LAINE        | WB        | 20%        | 21%        | 1%         | 22%        | 22%        | 0%         |
| Banner Lane        | NB        | 25%        | 22%        | -3%        | 43%        | 41%        | -2%        |
| DAINNER LAINE      | SB        | 71%        | 57%        | -14%       | 44%        | 36%        | -8%        |

7.7.7 The table shows that the V/C is higher in Scenario 1 compared to Scenario 3 in all locations around Eastern Green; however the increases are small, under 10% with the only exception to this on Pickford Green Lane and Banner Lane where the development connects onto the main highway network. None of the roads around the development has an unacceptably high V/C ratio in Scenario 1; they are deemed to be able to cope with the increase in traffic from Eastern Green.



Figure 7.11: Locations for Eastern Green V/C Table

7.7.8 To further understand the impact that the development has, journey time routes along the A45 through to Holyhead Road and along Cromwell Lane have been considered. The routes are illustrated in Figure 7.12 to Figure 7.14 and the results are presented in Table 7.4.



Figure 7.12 Scenario 3 Journey Time Route A along A45 through to Holyhead Road



Figure 7.13: Scenario 3 Journey Time Route B along Cromwell Lane



Figure 7.14: Scenario 3 Journey Time Route C along Broad Lane

|               |             | AM          | PEAK        |                 | PM PEAK     |             |            |                 |
|---------------|-------------|-------------|-------------|-----------------|-------------|-------------|------------|-----------------|
| DIRECTION     | SCENARIO 1  | SCENARIO 3  | DIFFERENCE  | %<br>DIFFERENCE | SCENARIO 1  | SCENARIO 3  | DIFFERENCE | %<br>DIFFERENCE |
| ROUTE A<br>EB | 14 MIN 17 S | 14 MIN 37 S | + 20 s      | 2.3%            | 9 мін 32 ѕ  | 9 мін 13 ѕ  | - 19 s     | -3.3%           |
| ROUTE A<br>WB | 10 MIN 7 S  | 9 мін 42 ѕ  | - 25 s      | -4.1%           | 12 MIN 43 S | 12 міn 19 s | - 24 s     | -3.1%           |
| ROUTE B<br>NB | 7мін 51 ѕ   | 7мін 23 s   | - 28        | -6.3%           | 7 MIN 57 S  | 7 MIN 41 S  | - 16 s     | -3.4%           |
| ROUTE B<br>SB | 8мін 42 s   | 8 MIN S     | -42s        | -8.8%           | 7 MIN 25 S  | 6 мін 59 s  | - 26 s     | -5.8%           |
| ROUTE C<br>EB | 4міN 52ss   | 4міn 48 s   | -4s         | -1.3%           | 4 MIN 29 S  | 4 MIN 30 S  | +1s        | 0.4%            |
| ROUTE C<br>WB | 4мін 20ѕ    | 4мın 22s    | <b>-2</b> s | 1%              | 4 MIN 47 S  | 4 MIN 47 S  | 0 s        | 0.0%            |

Table 7.4: Journey Time Route Comparison Scenario 1 vs Scenario 3

7.7.9 The journey time comparisons between Scenario 1 and Scenario 3 show slightly longer journey times with the Eastern Green development in place. However the increases in journey times in Scenario 1 compared to Scenario 3 are small: less than 10% or a maximum of 42 seconds. The only exception to this is Route A EB which takes longer in Scenario 3 compared to Scenario 1 which is a result of local re-routing.

#### 7.8 JUNCTION PERFORMANCE

7.8.1 The CASM HAM does not model highway junctions in detail, but it can highlight junctions which are experiencing more delay in the 2034 Local Plan Scenario 1 compared to Scenario 3. Figure 7.15 illustrates the junction delay experienced in the AM peak 2034 Local Plan Scenario 1 highlighting the average delay in 20 second increments. Scenario 1 assumes that Eastern Green houses and employment is built out.

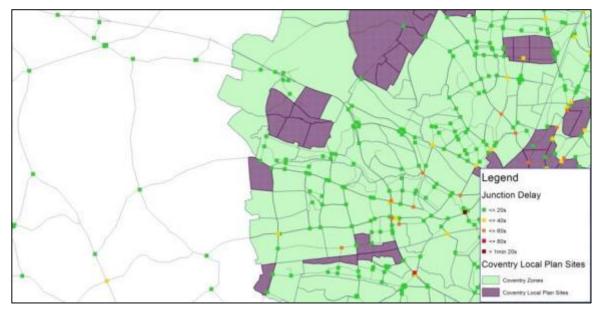



Figure 7.15: AM Peak 2034 Scenario 1 Average Junction Delay

7.8.2 Figure 7.15shows that in Scenario1 in the Eastern Green area, that the majority of junctions have an average delay of 20 seconds or less with a handful having between 40 and 60 seconds in the wider area around the development. Further assessment of the junction performance using

standalone junction models would be required in the Eastern Green local area to ensure they operate effectively with the proposals.

7.8.3 Figure 7.16 shows the junction performance without the Eastern Green development (Scenario 3) in the AM peak.

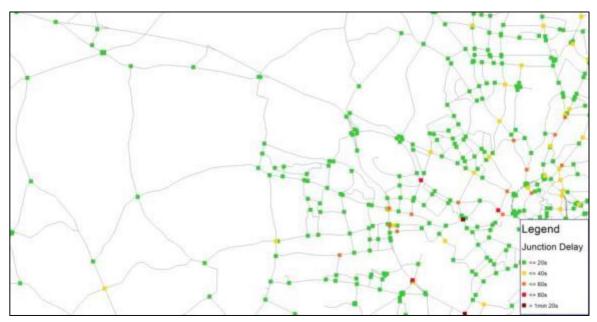



Figure 7.16: AM Peak 2034 Scenario 3 Average Junction Delay

- 7.8.4 Figure 7.16 shows that in Scenario 3 most junctions are operating without significant delays around the Eastern Green area.
- 7.8.5 Figure 7.17 illustrates the junctions which experience an increase in average delay between Scenario 3 and 1. This shows that all increases in junction delay around the Eastern Green development site are 20 seconds or less, which is not of significant concern. However it is advised that assessment would be required to assess the localised impacts of the development within standalone junction models to ensure that they would still operate effectively.



Figure 7.17: AM Peak 2034 Scenario 1 – Scenario 3 Average Junction Delay

7.8.6 Figure 7.18 illustrates the junction delay experienced in the PM peak 2034 Local Plan Scenario 1 highlighting the average delay in 20 second increments.

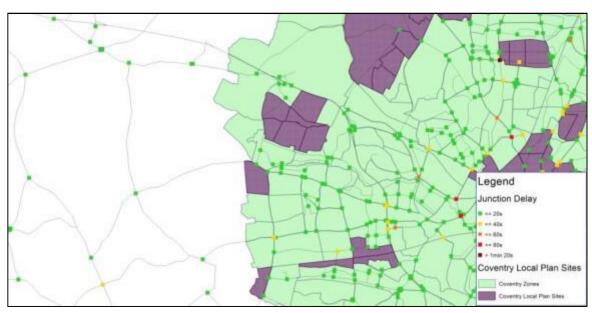



Figure 7.18: PM Peak 2034 Scenario 1 Average Junction Delay

- 7.8.7 Figure 7.18 shows that in Scenario1 in the Eastern Green area the majority of junctions have a delay of 20 seconds or less with a few having between 40 and 60 seconds in the wider area around the development.
- 7.8.8 Figure 7.19 shows the junction performance without the Eastern Green development (Scenario 3) in the PM peak.

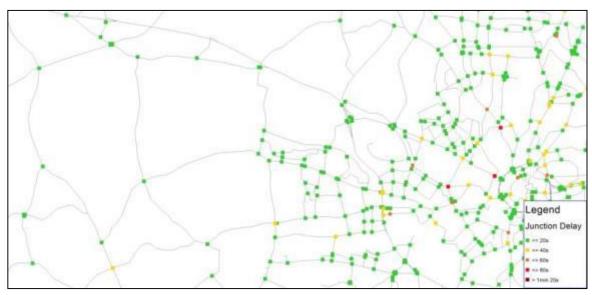



Figure 7.19: PM Peak 2034 Scenario 3 Average Junction Delay

- 7.8.9 Figure 7.19 shows that in Scenario 3 most junctions close to the site have an average delay of 20 seconds or less.
- 7.8.10 Figure 7.20 illustrates the junctions which experience an increase in delay between Scenario 3 and 1. This shows that all increases in average delay around Eastern Green are 20 seconds or less which is not of significant concern. However it is advisable to assess the localised impacts of the development within standalone junction models to ensure that they would still operate effectively.



Figure 7.20: PM Peak 2034 Scenario 1 - Scenario 3 Average Junction Delay

#### 7.9 SUMMARY

- 7.9.1 2034 Scenario 3 compared against Scenario 1 within Coventry and the Eastern Green area has the following impacts:
  - → Scenario 3 has no Eastern Green development within it and the houses and jobs associated with the development area are spread across the Coventry Local Authority area
  - → Key roads which car trips use to and from Eastern Green development include A45, Pickford Green Lane, Banner Lane and Cromwell Lane
  - Overall highway network performance across Coventry is not significantly affected by the Eastern Green development
  - → In the Eastern Green area, Pickford Green and Banner Lane experience increases in V/C ratio, however all increases that occur can all be accommodated within the link capacity of the existing network.
  - There are some junctions around the Eastern Green area which experience an increase in delays as a result of the proposed development
  - Additional junction modelling would be required to assess the localised impacts of the full Eastern Green development to ensure the junctions in the close vicinity operate well in the future.

# 8 LOCAL PLAN SCENARIO 4 RESULTS

#### 8.1 INTRODUCTION

- 8.1.1 This chapter of the report presents the results of the 2034 CASM Local Plan Scenario 4 and compares them to the 2034 CASM Local Plan Scenario 1. The comparisons undertaken include changes in:
  - Population
  - → Trip generation over a 12-hour period
  - Mode choice
  - Peak hour highway network performance
- In addition to this the Cromwell Lane local plan site is interrogated in more detail to understand the impact this site has on the highway network within and around Coventry.

#### 8.2 POPULATION CHANGES

8.2.1 The changes in population in 2034 Local Plan Scenario 4 compared to 2034 Local Plan Scenario 1 are graphically shown in Figure 8.1. This shows that the development from the Cromwell Lane area has been removed and as a result the growth in population has been spread across Coventry Local Authority area.

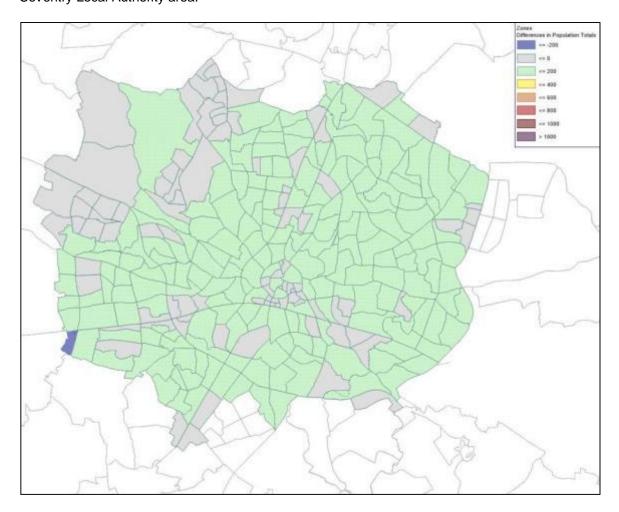



Figure 8.1: Changes in Population within Coventry Local Authority between 2034 Local Plan Scenario 4 and Scenario 1

## 8.3 TRIP GENERATION CHANGES

The changes in population shown in Figure 8.1 are translated into changes in trips generated in the 2034 Scenario 4 CASM TDM over a 12-hour period, as shown Figure 8.2.

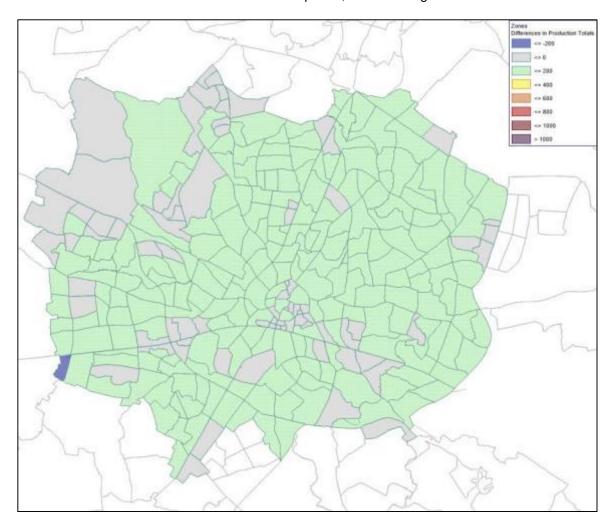



Figure 8.2: Changes in Total Trip Productions in Coventry Local Authority between 2034 Local Plan Scenario 4 and Scenario 1

#### 8.4 MODE CHOICE CHANGES

8.4.1 Figure 8.3 shows the change in mode choice between Scenario 1 and Scenario 4. It shows the reduction in travel demand from the Cromwell Lane site with increasing travel demand across the Coventry Local Authority area. The changes in modes at individual zone level are very small, with 240 homes spread across nearly 300 zones.

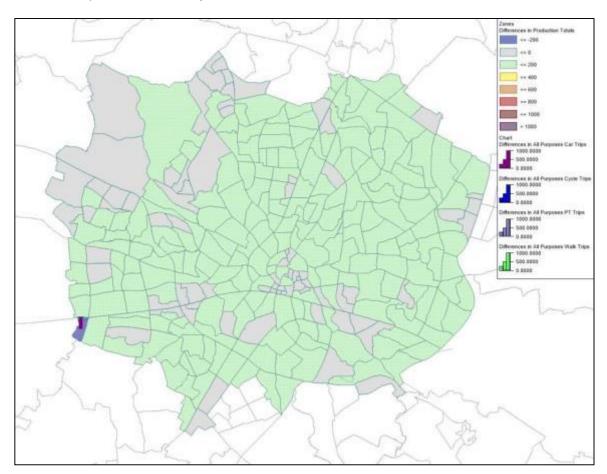



Figure 8.3 : Changes in Total Trip Productions by Mode in Coventry Local Authority between 2034 Local Plan Scenario 4 and Scenario 1

# 8.5 TRIP DISTRIBUTION

# 8.5.1 The trip distributions to and from the Cromwell Lane development are shown below for the AM and PM peak, in Figure 8.4 and Figure 8.5, respectively.



Figure 8.4: 2034 Scenario 1 AM Peak - Cromwell Lane Origin & Destination as a Percentage of the Total Traffic Flow on Network




Figure 8.5: 2034 Scenario 1 PM Peak - Cromwell Lane Origin & Destination as a Percentage of the Total Traffic Flow on Network

Figure 8.4 and Figure 8.5 show the key routes that car trips to and from the development will use. The plots show that in both the AM and PM peak there is a draw of commuting trips towards Coventry and westbound towards Birmingham. It is also noticeable that the volume of trips as a percentage of the traffic flow for Cromwell Lane is significantly lower than both Keresley and Eastern Green, which is because the proposed development for Cromwell Lane is only 240 homes, compared to 3,100 at Keresley and 2,250 homes and 4,250 jobs at Eastern Green. Therefore the proposed trips have a smaller impact on the highway network.

#### 8.6 PEAK HOUR TRAFFIC

Highway network statistics have been extracted from the Scenario 1 and Scenario 4 models, as shown below in Table 8.1. These statistics show that in Scenario 4, there are minimal changes, and the impact of the 240 dwellings within the Cromwell Lane development is not significant and bears little impact on the wider network. As aforementioned, the links from which these statistics have been extracted have been illustrated previously in Chapter 5, within Figure 5.8

Table 8.1: Coventry Local Authority Highway Network Statistics Scenario 4 vs Scenario 1

|                                        |               | Д             | M PEAK     |              |               |               | PM PEAK    |              |
|----------------------------------------|---------------|---------------|------------|--------------|---------------|---------------|------------|--------------|
| METRIC                                 | SCENARIO<br>1 | SCENARIO<br>4 | DIFFERENCE | % DIFFERENCE | SCENARIO<br>1 | SCENARIO<br>4 | DIFFERENCE | % DIFFERENCE |
| LINK CRUISE<br>TIME<br>(VEH/HRS)       | 11,370        | 11,354        | - 16       | - 0.14%      | 11,624        | 11,603        | - 21       | - 0.18%      |
| TOTAL TRAVEL TIME (VEH/HRS)            | 14,504        | 14,437        | - 67       | - 0.46%      | 14,441        | 14,419        | - 22       | - 0.15%      |
| TOTAL<br>NETWORK<br>DELAY<br>(VEH/HRS) | 3,640         | 3,579         | - 67       | - 1.68%      | 3,374         | 3,386         | + 12       | + 0.34%      |
| TOTAL TRAVEL DISTANCE (VEH/KMS)        | 802,621       | 801,710       | - 911      | - 0.11%      | 822,924       | 821,681       | - 1,243    | - 0.15%      |
| AVERAGE<br>SPEED<br>(KM/H)             | 55.3          | 55.5          | + 0.2      | + 0.35%      | 57.0          | 57.0          | 0.00       | 0.00%        |

8.6.2 Overall highway statistics were also extracted for a smaller area around the Cromwell Lane site, illustrated in Figure 8.6. Table 8.2 presents the comparisons of the highway statistics for this smaller area.

Table 8.2: Cromwell Lane Local Area Highway Network Statistics Scenario 4 vs Scenario 1

|                                   |               | А             | M PEAK     |              |               |               | PM PEAK    |              |
|-----------------------------------|---------------|---------------|------------|--------------|---------------|---------------|------------|--------------|
| METRIC                            | SCENARIO<br>1 | SCENARIO<br>4 | DIFFERENCE | % DIFFERENCE | SCENARIO<br>1 | SCENARIO<br>4 | DIFFERENCE | % DIFFERENCE |
| LINK CRUISE<br>TIME<br>(VEH/HRS)  | 897           | 891           | -6         | -1%          | 837           | 834           | -4         | 0%           |
| TOTAL<br>TRAVEL TIME<br>(VEH/HRS) | 1,101         | 1,090         | -10        | -1%          | 983           | 982           | -1         | 0%           |
| TOTAL NETWORK DELAY (VEH/HRS)     | 225           | 220           | -5         | -2%          | 172           | 175           | 3          | 1%           |
| TOTAL TRAVEL DISTANCE (VEH/KMS)   | 52,845        | 52,515        | -330       | -1%          | 49,775        | 49,538        | -237       | 0%           |
| AVERAGE<br>SPEED<br>(KM/H)        | 48.0          | 48.2          | 0          | 0%           | 50.6          | 50.4          | -0         | 0%           |

The highway network statistics shows that without the Cromwell Lane development in the local area there is a reduction in network delay of 2% in the AM peak and a reduction in travel distance of 1%. Average speed remains very similar in the area in both peaks. This suggests that within the area assessed the full Cromwell Lane development does not have significant impacts on the performance of the local highway network.

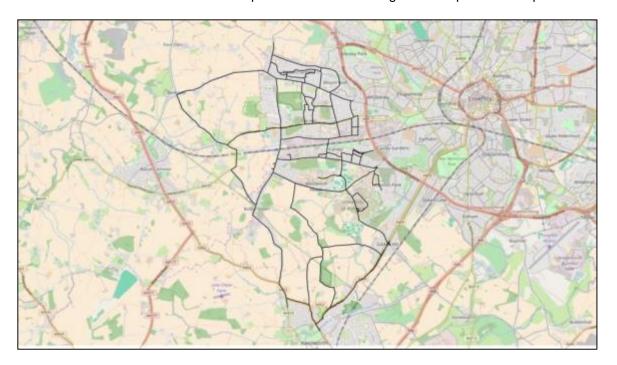



Figure 8.6: Cromwell Lane Highway Network

The differences in Volume/Capacity ratio along Cromwell Lane between Scenario 1 and Scenario 4 in the AM and PM peaks are illustrated in Figure 8.7 and Figure 8.8, respectively. The plots show that in Scenario 1 as a result of the Cromwell Lane development there is increased V/C along Cromwell Lane and Charter Avenue, although the changes are small between 1 and 4%. Overall, the impact of the development on the volume/capacity ratio of the network in the site's vicinity is minimal.

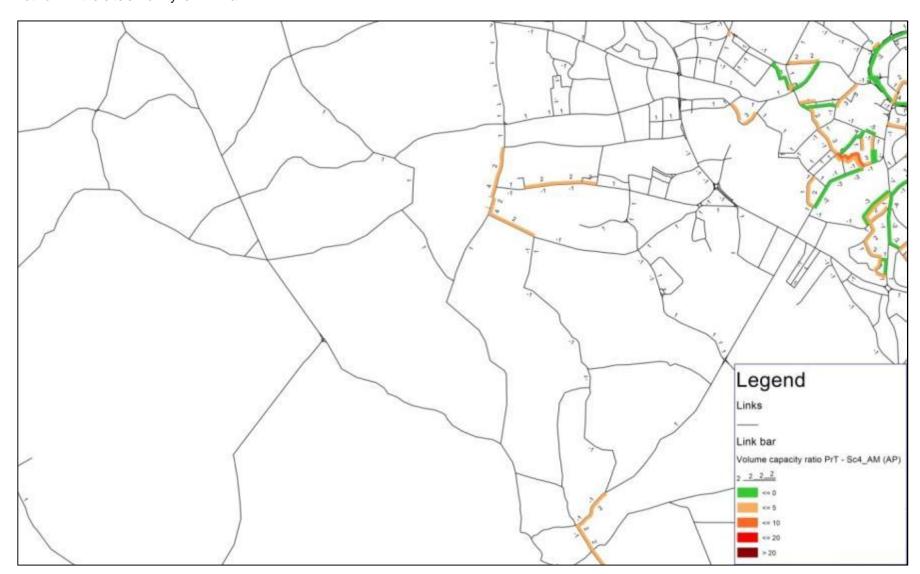



Figure 8.7: AM Peak Scenario 1 vs Scenario 4 V/C Difference Plot

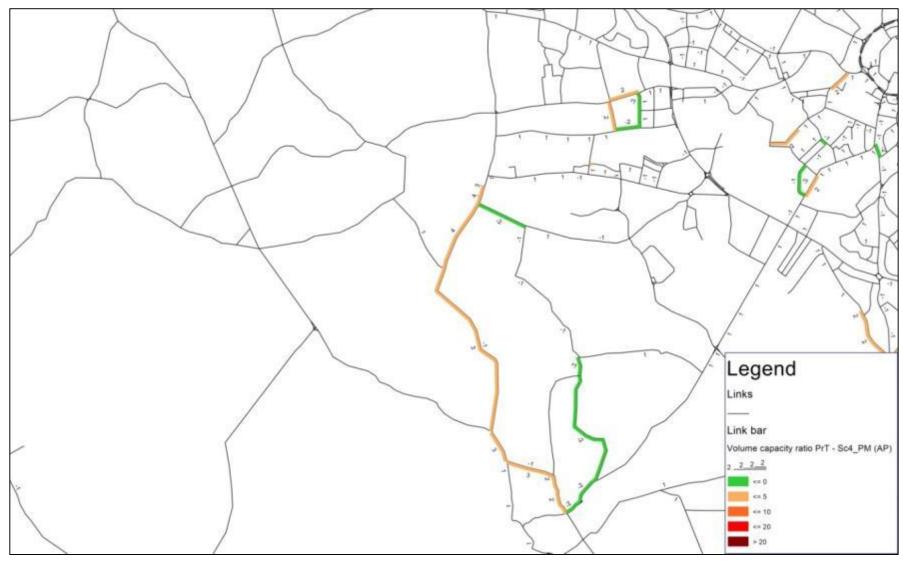



Figure 8.8: PM Peak Scenario 1 vs Scenario 4 V/C Difference Plot

8.6.5 To further understand the impact that the development has, a journey time route along Cromwell Lane has been considered. The route is illustrated in Figure 8.9, and the results are presented in Table 8.4. The increases in journey time along this route as a result of the development are very minimal, with the highest value being 3 seconds.



Figure 8.9: Scenario 4 Journey Time Route along Cromwell Lane

Table 8.3: Journey Time Route Comparison Scenario 1 vs Scenario 4

| DIRECTION |            | AM PEAK    |            |            | PM PEAK    |            |
|-----------|------------|------------|------------|------------|------------|------------|
| DIRECTION | SCENARIO 1 | SCENARIO 4 | DIFFERENCE | SCENARIO 1 | SCENARIO 4 | DIFFERENCE |
| NB        | 4 MIN 53 S | 4 MIN 50 S | <b>3</b> s | 5 MIN 18 S | 5 MIN 16 S | 2 s        |
| SB        | 5 MIN 57 S | 5 MIN 57 S | 0 s        | 4 MIN 38 S | 4 MIN 37 S | 1 s        |

#### 8.7 JUNCTION PERFORMANCE

8.7.1 The CASM HAM does not model highway junctions in detail, but it can highlight junctions which are experiencing more delay in the 2034 Local Plan Scenario 1 compared to Scenario 4. Figure 8.10 illustrates the junction delay experienced in the AM peak 2034 Local Plan Scenario 1 highlighting the average delay in 20 second increments. Scenario 1 assumes the Cromwell Lane housing site is built.

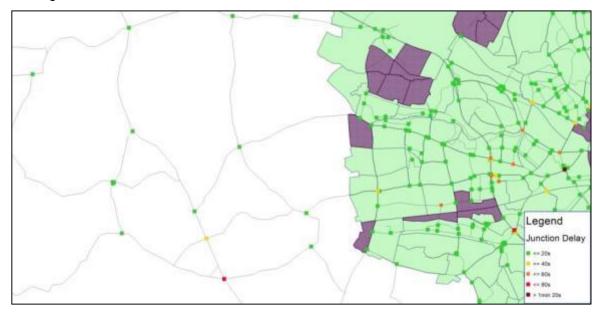
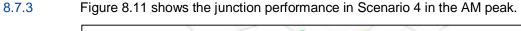




Figure 8.10: AM Peak 2034 Scenario 1 Average Junction Delay

8.7.2 Figure 8.10 shows that in Scenario1 in the Cromwell Lane area the majority of junctions have an average junction delay of 20 seconds or less with a handful having between 20 and 60 seconds close to the development, including the junction between Tile Hill Lane and Cromwell Lane. Individual junction modelling would be required to ensure these junctions operate well in the future.



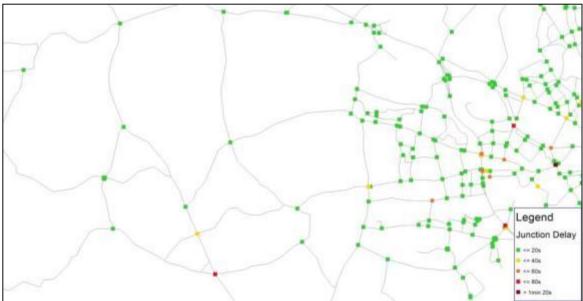



Figure 8.11: AM Peak 2034 Scenario 4 Average Junction Delay

- 8.7.4 Figure 8.11 shows that in Scenario 4 the junction between Tile Hill Lane and Cromwell Lane also has delay between 20-40 seconds which suggests the delay is occurring at this junction without the new homes at Cromwell Lane.
- 8.7.5 Figure 8.12 illustrates the junctions which experience an increase in average delay between Scenario 4 and 1. This shows that all increases in average delay around the Cromwell Lane site are 20 seconds or less which is not of significant concern. However it would be prudent to assess the localised impacts of the development within standalone junction models to ensure that they would operate effectively.

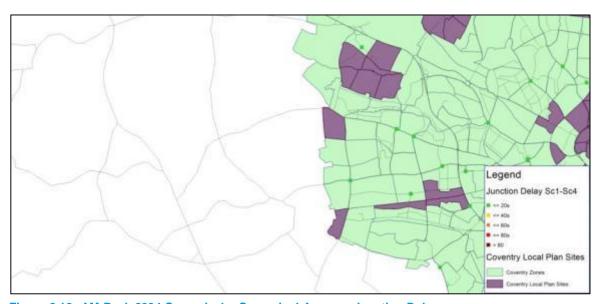



Figure 8.12: AM Peak 2034 Scenario 1 – Scenario 4 Average Junction Delay

Figure 8.13 illustrates the average junction delay experienced in the PM peak 2034 Local Plan Scenario 1 highlighting the average delay in 20 second increments.

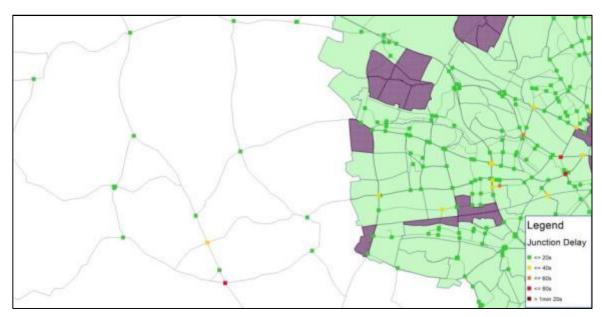



Figure 8.13: PM Peak 2034 Scenario 1 Average Junction Delay

- 8.7.7 Figure 8.13 shows that in Scenario1 in the Cromwell Lane area the majority of junctions have an average junction delay of 20 seconds or less with a handful having between 20 and 60 seconds close to the development, including the junction between Till Hill Lane and Cromwell Lane.
- 8.7.8 Figure 8.14 shows the junction performance in Scenario 4 in the PM peak.

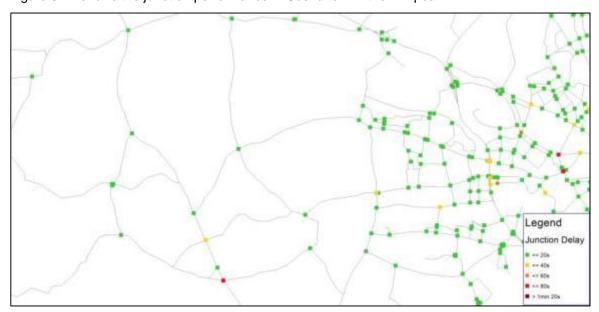



Figure 8.14: PM Peak 2034 Scenario 4 Average Junction Delay

8.7.9 Figure 8.14 shows that in Scenario 4 the junction between Tile Hill Lane and Cromwell Lane experiences a higher than average delay at a strategic level than adjacent junctions, both with and without the Cromwell Lane development.

8.7.10 Figure 8.15 illustrates the junctions which experience an increase in average delay between Scenario 4 and 1. This shows that all increases in average delay around the Cromwell Lane site are 20 seconds or less. However it would be prudent to assess the localised impacts of the development within standalone junction models to ensure that they would still operate effectively.



Figure 8.15: PM Peak 2034 Scenario 1 - Scenario 4 Average Junction Delay

- 8.7.11 Individual junction modelling has been undertaken in the Cromwell Lane area, representing 2016 traffic flows and future year flows with and without the Cromwell Lane development for the following junctions:
  - Cromwell Lane / Westwood Heath Rd (priority junction)
  - Cromwell Lane / Charter Avenue (priority junction)
  - Station Avenue / Duggins Lane (priority junction)
  - Station Avenue Torrington Avenue (priority junction)
  - → Banner Lane / Broad Lane (priority junction)
  - Station Avenue / Tile Hill Lane / Banner Lane (signalised junction)
- 8.7.12 Observed traffic turning counts and queue length surveys were undertaken in July 2016 on two weekdays at all the junctions above during the AM (8:00-9:00) and PM (17:00-18:00) peak time periods. Individual junction models were generated using the 2016 traffic flows to represent the queuing and traffic volumes travelling through these junctions.
- 8.7.13 The ratio of volume to capacity (RFC) for the operation of the priority junctions in 2016 is shown in Table 8.4. The highest RFC for all approaches to the junction, from the peak 15 minutes, has been presented. Junctions which have an approach RFC of over 0.85 are considered to have congestion issues on that approach which require additional investigation and potentially mitigation.

Table 8.4: Cromwell Lane Junction RFC Performance 2016 Priority Junctions

AM Peak

DM Peak

|                                     | AM Peak | PM Peak |
|-------------------------------------|---------|---------|
| Cromwell Lane<br>/Westwood Heath Rd | 1.02    | 0.83    |
| Cromwell Lane /<br>Charter Avenue   | 0.61    | 0.94    |
| Station Avenue /<br>Duggins Lane    | 0.88    | 0.56    |
| Station Avenue<br>Torrington Avenue | 0.22    | 0.27    |
| Banner Lane / Broad<br>Lane         | 0.76    | 0.98    |

- 8.7.14 Table 8.5 The tables show that the following junctions have capacity issues in 2016:
  - → Cromwell Lane Westwood Heath Rd
  - → Cromwell Lane / Charter Avenue
  - Station Avenue / Duggins Lane
  - Banner Lane / Broad Lane
- 8.7.15 In the future with increased traffic growth the congestion issues occurring at these junction would be exacerbated.
- 8.7.1 For the signalised junction between Station Avenue, Tile Hill Lane and Banner Lane the PRC (Practical Reserved Capacity) which represents the percentage of available capacity at the junction is presented in Table 8.5. Junctions which have a negative PRC are considered to have congestion issues on that approach which require additional investigation and potentially mitigation. The results show that the junction operates within capacity on all approaches and there are no congestion issues in 2016.

Table 8.5: Cromwell Lane Junction Performance 2016 Signalised Junction

|                                                  | AM Peak | PM Peak |
|--------------------------------------------------|---------|---------|
| Station Avenue / Tile<br>Hill Lane / Banner Lane | 23.6%   | 10.2%   |

The indicative impacts of a future scenario, with and without the Cromwell Lane development on these junctions is shown in Table 8.6 and Table 8.7.

**Table 8.6: Cromwell Lane Future Year Junction Performance Priority Junctions** 

|                                       | AM F                  | Peak                  | PM Peak               |                       |  |
|---------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|--|
|                                       | WITHOUT CROMWELL LANE | WITH CROMWELL<br>LANE | WITHOUT CROMWELL LANE | WITH CROMWELL<br>LANE |  |
| Cromwell Lane<br>Westwood Heath<br>Rd | 1.11                  | 1.13                  | 0.85                  | 0.90                  |  |
| Cromwell Lane /<br>Charter Avenue     | 0.83                  | 0.87                  | 1.21                  | 1.32                  |  |
| Station Avenue /<br>Duggins Lane      | 1.10                  | 1.15                  | 0.64                  | 0.66                  |  |
| Station Avenue<br>Torrington Avenue   | 0.22                  | 0.23                  | 0.30                  | 0.31                  |  |
| Banner Lane / Broad<br>Lane           | 1.03                  | 1.04                  | 1.05                  | 1.06                  |  |

Table 8.7: Cromwell Lane Junction Future Year Performance Signalised Junction

|                                                     | AM Peak            | PM Peak               |                    |                          |
|-----------------------------------------------------|--------------------|-----------------------|--------------------|--------------------------|
|                                                     | WITH CROMWELL LANE | WITHOUT CROMWELL LANE | WITH CROMWELL LANE | WITHOUT<br>CROMWELL LANE |
| Station Avenue /<br>Tile Hill Lane /<br>Banner Lane | 9.2%               | 8.9%                  | 14.7%              | 12.7%                    |

- 8.7.3 Table 8.6 and Table 8.7 show that the Cromwell Lane development has minimal impact on the junction performance and the junctions which are operating over capacity, do so in the future without the Cromwell Lane development in place. The tables indicate that the following junctions require further investigation into mitigation which could be adopted to improve the performance of these junctions in the future:
  - → Cromwell Lane Westwood Heath Rd
  - → Cromwell Lane / Charter Avenue
  - Station Avenue / Duggins Lane
  - → Banner Lane / Broad Lane
- 8.7.4 Detailed junction modelling reports can be requested through CCC if required.

#### 8.8 SUMMARY

- 8.8.1 2034 Scenario 4 compared against Scenario 1 within Coventry and the Cromwell Lane area has the following impacts:
  - Scenario 4 does not contain the Cromwell Lane development; the additional houses and trips are spread across Coventry
  - Key roads which car trips use to and from the Cromwell Lane development include Cromwell Lane, Charter Avenue and Westwood Heath Road
  - Overall highway network performance across Coventry and the localised Cromwell Lane area is not significantly affected by the Cromwell Lane development
  - → As a result of the Cromwell Lane development there is a very small increase in V/C ratio on Cromwell Lane and Charter Avenue, however the increases are small and the overall impact of the development on V/C ratio is minimal.
  - → The time to undertake journeys around the Cromwell Lane development only increases by 1-3 seconds, which is minimal, as a result of the Cromwell Lane development
  - → There are some junctions around the Cromwell Lane area which experience a slight increase in delay as a result of the Cromwell Lane development
  - → Some junction modelling around the Cromwell Lane area has been undertaken using traffic surveys from 2016
  - The junction modelling indicates that some junctions and approaches currently have congestion issues and require additional investigation and potential mitigation
  - → In the future with increases in traffic flow the Cromwell Lane development has minimal impact on the junction performance and junctions which experience congestion issues in 2016 are exacerbated in the future
  - Further investigation into potential mitigation measures at these junctions needs to be considered

# 9 SUMMARY OF LOCAL PLAN SCENARIOS

## 9.1 INTRODUCTION

9.1.1 This chapter summarises the impacts of each local plan scenario.

#### 9.2 LOCAL PLAN SCENARIO 1

- 9.2.1 2034 Scenario 1 compared against the 2013 Base Year model within Coventry has the following impacts:
  - → 19% increase in population
  - → 18% increase in trips generated by all modes
  - Proposed developments close to the city centre have a greater proportion of trips being made by public transport, walking and cycling
  - → Sites on the edge of the city centre generate predominantly car trips
  - → A greater proportion of trips starting in Coventry in the AM peak travels to areas outside of Coventry Local Authority
  - → A greater proportion of trips arriving in Coventry in the PM peak travels from areas outside of Coventry Local Authority
  - → An increase in the proportion of trips in Coventry travelling to/ from Coventry NW (Including Keresley and Eastern Green)
  - → An increase in the proportion of car trips travelling to Coventry SE (Whitley) in the AM peak and from Coventry SE in the PM peak
  - 34% increase in vehicle/km's undertaken in Coventry which is a result of the increase in traffic as well as increases in distance travelled
  - → Up to a 37% increase in highway network delay per vehicle, equating to up to 34 seconds
  - → A reduction in average speed of 3 kph
  - → Junctions which experience the most increase in delays are on key routes in and around Coventry, particularly on the A45 and around the M6. There are 3 junctions in the AM and 4 junction in the PM which experience increases of over 1min 20seconds between 2013 and 2034. These should be assessed using individual junction models as and when planning applications in the local area come forward.

#### 9.3 LOCAL PLAN SCENARIO 2

- 9.3.1 2034 Scenario 2 compared against Scenario 1 within Coventry and the Keresley area has the following impacts:
  - Scenario 2 only has 800 houses at Keresley, additional houses and trips are spread across Coventry
  - Key roads which cars use to and from Keresley include Bennetts Road and Tamworth Road which constitute up to 50% of development traffic in Scenario 1
  - Overall highway network performance across Coventry is not significantly affected by the Keresley development

- → In the Keresley area there is an increase in delay and travel distance as a result of Scenario 1, however average speeds remain similar
- → As a result of the full Keresley development and the Link Road there is generally an increase in V/C ratio on roads leading to the development, however on Sandpits Lane and Tamworth Road V/C reduces as more traffic uses the new Link Road rather than the existing highway network
- → There are some junctions around the Keresley area which experience an increase in delays as a result of the full Keresley development, these are relatively small
- → Additional junction modelling would be required to assess the localised impacts of the full Keresley development to ensure the junctions in the close vicinity operate well in the future.

#### 9.4 LOCAL PLAN SCENARIO 3

- 9.4.1 2034 Scenario 3 compared against Scenario 1 within Coventry and the Eastern Green area has the following impacts:
  - → Scenario 3 has no Eastern Green development within it and the houses and jobs associated with the development area are spread across the Coventry Local Authority area
  - → Key roads which car trips use to and from Eastern Green development include A45, Pickford Green Lane, Banner Lane and Cromwell Lane
  - → Overall highway network performance across Coventry is not significantly affected by the Eastern Green development
  - → In the Eastern Green area, Pickford Green and Banner Lane experience increases in V/C ratio, however all increases that occur can all be accommodated within the link capacity of the existing network.
  - → There are some junctions around the Eastern Green area which experience an increase in delays as a result of the proposed development
  - Additional junction modelling would be required to assess the localised impacts of the full Eastern Green development to ensure the junctions in the close vicinity operate well in the future.

#### 9.5 LOCAL PLAN SCENARIO 4

- 9.5.1 2034 Scenario 4 compared against Scenario 1 within Coventry and the Cromwell Lane area has the following impacts:
  - Scenario 4 does not contain the Cromwell Lane development; the additional houses and trips are spread across Coventry
  - → Key roads which car trips use to and from the Cromwell Lane development include Cromwell Lane, Charter Avenue and Westwood Heath Road
  - Overall highway network performance across Coventry and the localised Cromwell Lane area is not significantly affected by the Cromwell Lane development
  - As a result of the Cromwell Lane development there is a very small increase in V/C ratio on Cromwell Lane and Charter Avenue, however the increases are small and the overall impact of the development on V/C ratio is minimal.
  - → The time to undertake journeys around the Cromwell Lane development only increases by 1-3 seconds, which is minimal, as a result of the Cromwell Lane development
  - There are some junctions around the Cromwell Lane area which experience a slight increase in delay as a result of the Cromwell Lane development

- → Some junction modelling around the Cromwell Lane area has been undertaken using traffic surveys from 2016
- → The junction modelling indicates that some junctions and approaches currently have congestion issues and require additional investigation and potential mitigation
- → In the future with increases in traffic flow the Cromwell Lane development has minimal impact on the junction performance and junctions which experience congestion issues in 2016 are exacerbated in the future
- → Further investigation into potential mitigation measures at these junctions needs to be considered

# 10 KERESLEY LINK ROAD ASSESSMENT

#### 10.1 INTRODUCTION

- 10.1.1 This chapter of the report summarises the work undertaken to generate 2034 CASM HAM with various levels of development at the Keresley SUE with and without the Keresley Link Road.
- The objective of this study is to identify the impacts that the increasing number of houses at Keresley and the Keresley Link Road has on the highway network.

#### 10.2 MODELLING INPUTS AND ASSUMPTIONS

- The 2034 Coventry Local Plan Scenario 2 model (with Keresley consented development, no Keresley Link Road) was used as a basis for this assessment.
- 10.2.2 The scenarios which were assessed are:

Scenario A2: 800 houses without Keresley Link Road
 Scenario B2: 1150 houses without Keresley Link Road
 Scenario C1: 1950 houses with Keresley Link Road
 Scenario C2: 1950 houses without Keresley Link Road
 Scenario D1: 3100 houses without Keresley Link Road
 Scenario D2: 3100 houses without Keresley Link Road

- All scenarios without the Link Road are tested with the 2034 Scenario 2 highway network, those with the Link Road use the 2034 Scenario 1 highway network.
- 10.2.4 Keresley development is represented within the CASM HAM within 11 zones, or areas as shown in Figure 10.1. The split of houses between these Keresley zones can be found in Table 10.1.



Figure 10.1: Keresley Zones

**Table 10.1: Spilt of Keresley Houses** 

|        | ScA | ScB  | ScC  | ScD  |
|--------|-----|------|------|------|
| Zone   | 800 | 1150 | 1950 | 3100 |
| 20711  |     |      |      | 67   |
| 20714  |     |      | 43   | 43   |
| 220001 | 350 | 350  | 471  | 471  |
| 220002 |     |      | 441  | 441  |
| 220003 | 100 | 100  | 218  | 218  |
| 220004 | 350 | 558  | 558  | 804  |
| 220005 |     | 143  | 219  | 219  |
| 220006 |     |      |      | 289  |
| 220007 |     |      |      | 86   |
| 220008 |     |      |      | 232  |
| 220009 |     |      |      | 232  |
| Total  | 800 | 1150 | 1950 | 3100 |

- The agreed vehicle trip rates were provided to WSP | Parsons Brinckerhoff in Table 10.2. The total number of trips for each scenario can be found in Table 10.3. It has been assumed that all these vehicles are car trips, and there are no LGV or HGV trips.
- 10.2.6 The CASM HAM has two car user classes:
  - → Car Work trips (trips made whilst people are working)
  - Car Non Work trips (trips made whilst people are going to and from work, the shops, schools etc)

Trips are split between Car Work trips and Car Non Work trips based on the modal split in the 2034 Coventry Local Plan Scenario 1. Car Work trips and Car Non Work trips are also then distributed according to the trip distribution from the 2034 Coventry Local Plan Scenario 1.

**Table 10.2: Keresley Trip Rate** 

| АМ                        |                        |         | РМ                                         |      |         |  |
|---------------------------|------------------------|---------|--------------------------------------------|------|---------|--|
| Arrivals/<br>Destinations | Departures/<br>Origins | Two Way | Arrivals/ Departures/ Destinations Origins |      | Two Way |  |
| 0.18                      | 0.45                   | 0.63    | 0.47                                       | 0.25 | 0.72    |  |

**Table 10.3: Keresley Trip Generation** 

| SCENARIO | IUUUSES   | АМ                        |                        |         | PM                        |                        |         |  |
|----------|-----------|---------------------------|------------------------|---------|---------------------------|------------------------|---------|--|
|          |           | Arrivals/<br>Destinations | Departures/<br>Origins | Two Way | Arrivals/<br>Destinations | Departures/<br>Origins | Two Way |  |
|          | Trip Rate | 0.18                      | 0.45                   | 0.63    | 0.47                      | 0.25                   | 0.72    |  |
| А        | 800       | 144                       | 360                    | 504     | 376                       | 200                    | 576     |  |
| В        | 1151      | 207                       | 518                    | 725     | 541                       | 288                    | 829     |  |
| С        | 1950      | 351                       | 878                    | 1229    | 917                       | 488                    | 1404    |  |
| D        | 3102      | 558                       | 1396                   | 1954    | 1458                      | 776                    | 2233    |  |

#### 10.3 RESULTS WITHOUT KERESLEY LINK ROAD

- 10.3.1 This section of the report presents the CASM outputs for the scenarios without the Keresley Link Road, showing:
  - → Volume Capacity Ratio
  - > Network Statistics
  - Journey Times
  - → Traffic Flows
  - Junction Performance

#### **VOLUME CAPACITY RATIO**

10.3.2 Volume / Capacity Ratio plots were produced to provide a comparison between Scenario A2, B2, C2 and Scenario D2, in the AM and PM peaks, as shown in Figure 10.2 to Figure 10.9.

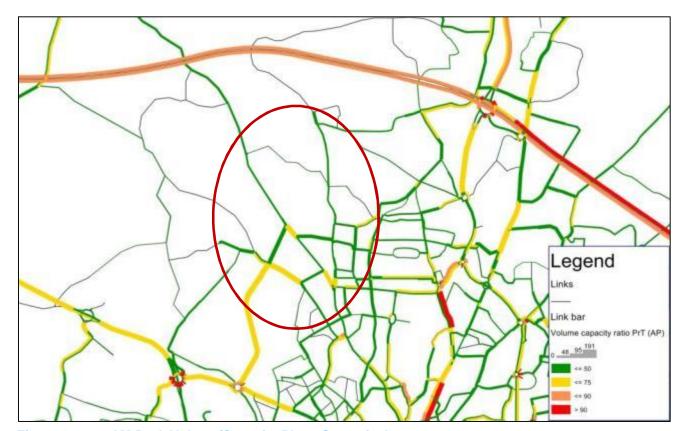



Figure 10.2: AM Peak Volume/Capacity Plot – Scenario A2

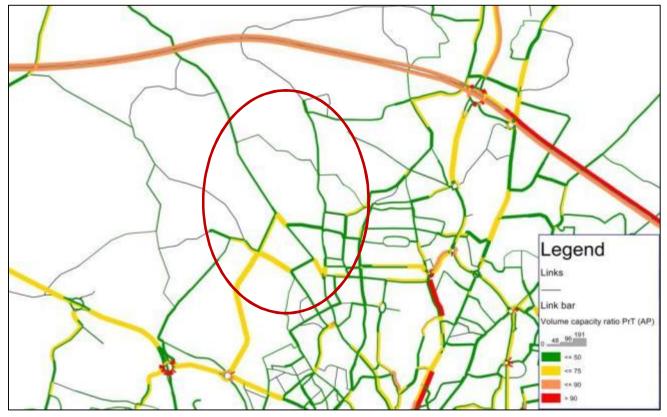



Figure 10.3: AM Peak Volume/Capacity Plot – Scenario B2

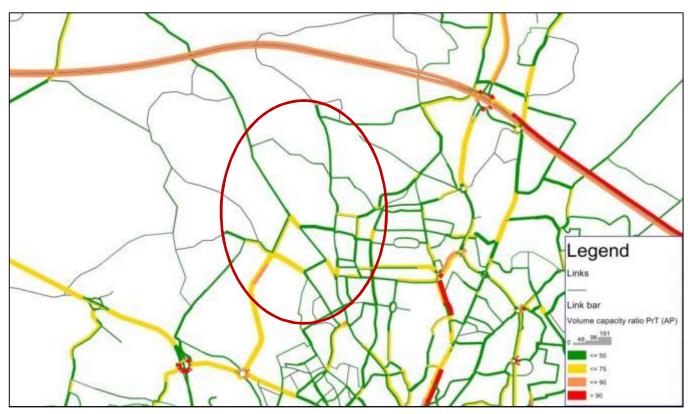



Figure 10.4: AM Peak Volume/Capacity Plot – Scenario C2

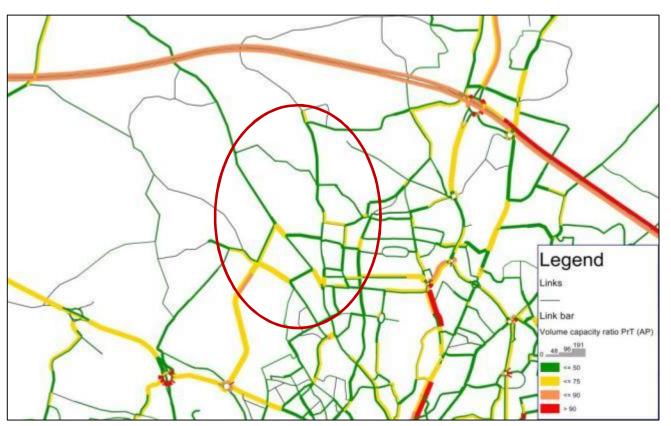



Figure 10.5: AM Peak Volume/Capacity Plot – Scenario D2

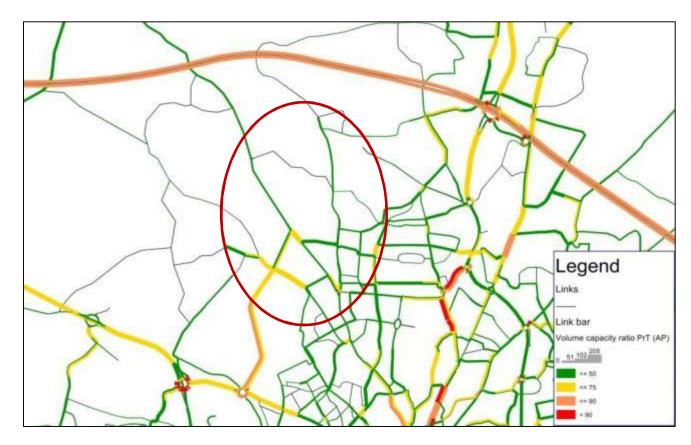



Figure 10.6: PM Peak Volume/Capacity Plot – Scenario A2

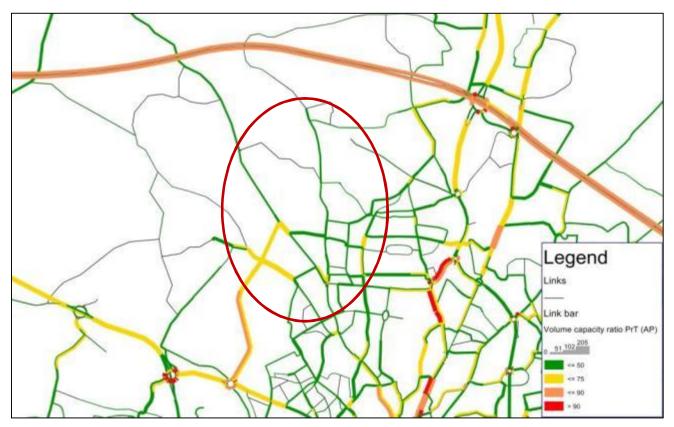



Figure 10.7: PM Peak Volume/Capacity Plot – Scenario B2

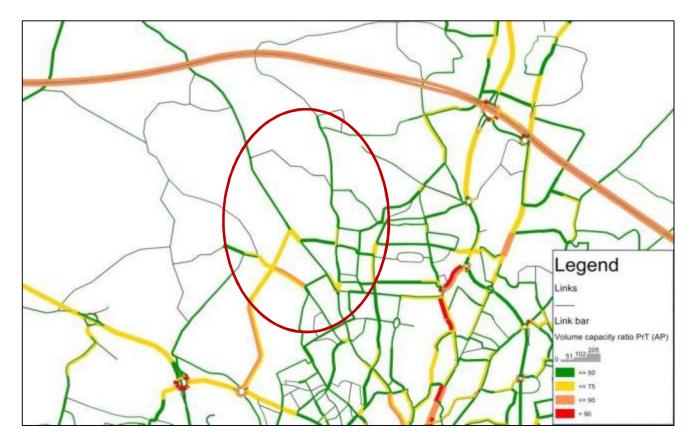



Figure 10.8: PM Peak Volume/Capacity Plot – Scenario C2

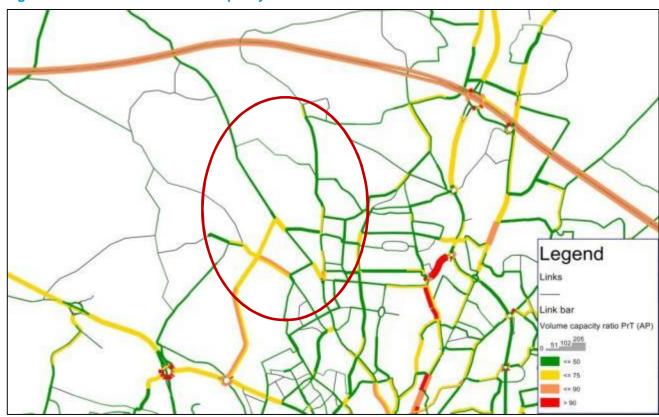



Figure 10.9: PM Peak Volume/Capacity Plot – Scenario D2

- In the AM peak with the increasing number of houses at Keresley there are some sections of the highway network which experience an increasing amount of vehicles, which results in a higher V/C ratio. The sections of highway network where this occurs are:
  - → B4076 increases from V/C of under 75% in Scenario A2 to a V/C of between 75 to 90% in Scenario C2 and D2
  - → Bennetts Road at the northern end increases from a V/C ratio of under 50% in Scenario A2 to between 50 to 75% in Scenario D2.
- These changes in V/C ratio do not generate significant issues as there still remains available capacity on the highway network for additional traffic. All other changes in V/C ratios increase, for example on Watery Lane and Five Field Road but remain within the ranges identified.
- In the PM peak with the increasing number of houses at Keresley there are some sections of the highway network which experience an increasing amount of vehicles, which results in a higher V/C ratio. The sections of highway network where this occurs are:
  - → Bennetts Road just north of Sandpits Lane increases from a V/C ratio of under 50% in Scenario A2 to between 50 to 75% in Scenario C2 and D2.
  - → Brownshill Green Lane increases from V/C ratio from between 50 to 75% to between 75 to 90% in Scenario C2 and D2.
- These changes in V/C ratio do not generate significant issues as there still remains available capacity on the highway network for additional traffic. All other changes in V/C ratios increase, for example on Watery Lane and Five Field Road but remain within the ranges identified.
- 10.3.7 Overall, the changes in V/C ratios experienced in the AM and PM peak in all scenarios are within acceptable levels; there are some increases but these remain acceptable V/C ratios.

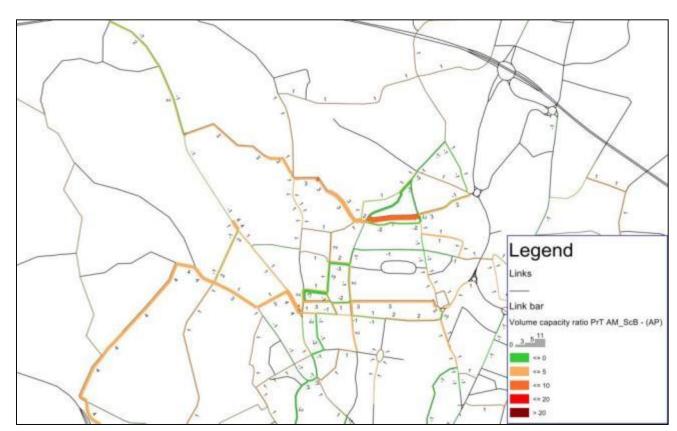



Figure 10.10: AM Peak Volume/Capacity Difference Plot AM 2034 Scenario B2 - AM 2034 Scenario A2

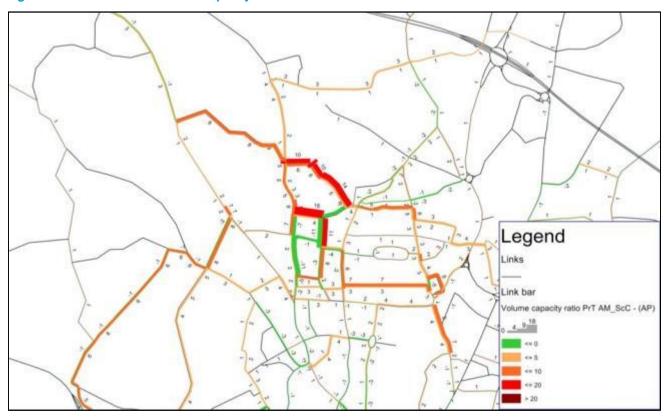



Figure 10.11: AM Peak Volume/Capacity Difference Plot AM 2034 Scenario C2 - AM 2034 Scenario A2

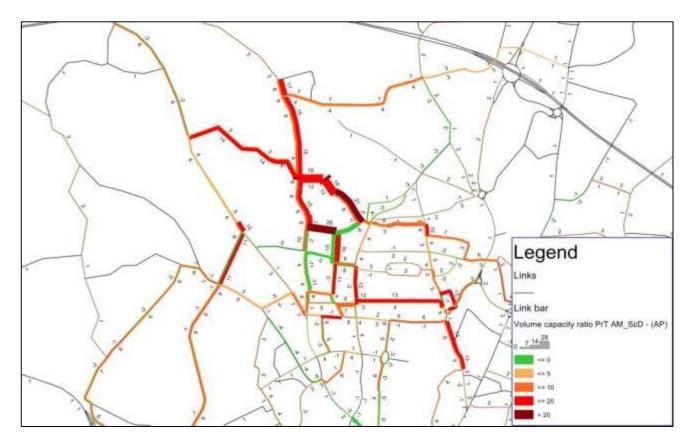



Figure 10.12: AM Peak Volume/Capacity Difference Plot AM 2034 Scenario D2 - AM 2034 Scenario A2

10.3.8 Figure 10.10 to Figure 10.12 present the changes in V/C ratio in the AM peak comparing Scenario B2, C2 and D2 against Scenario A2. The plots show that, as the number of houses and car trips increase at Keresley, the changes in V/C ratio increase on the local highway network. The plots show the local highway network which the Keresley developments are likely to use; these will include some local residential roads within the area. With Scenario D2 there are increases in V/C ratio of over 20% on Watery Lane and Penny Park Lane. However, as seen in Figure 10.5, these increases in V/C ratio still keep the V/C ratio under 50%.

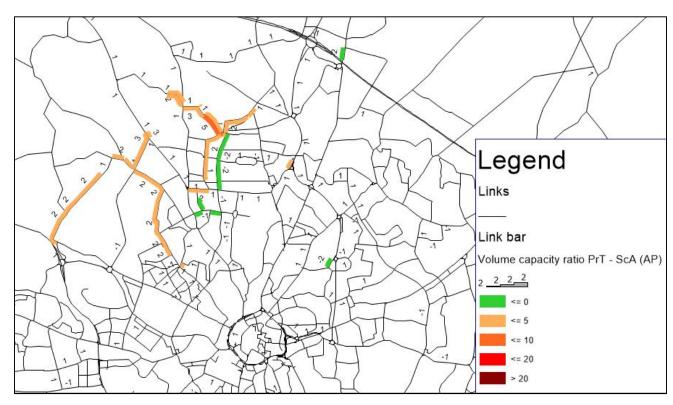



Figure 10.13: PM Peak Volume/Capacity Difference Plot PM 2034 Scenario B - PM 2034 Scenario A

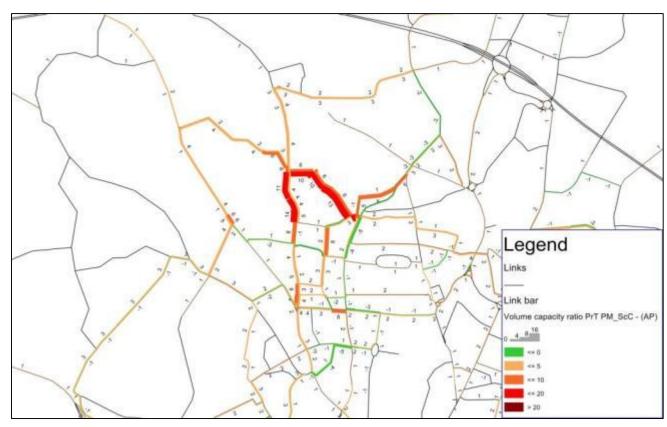



Figure 10.14: PM Peak Volume/Capacity Difference Plot PM 2034 Scenario C - PM 2034 Scenario A

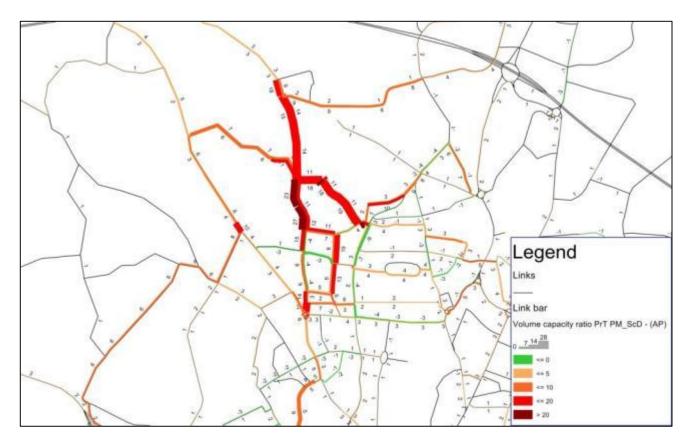



Figure 10.15: PM Peak Volume/Capacity Difference Plot PM 2034 Scenario D - PM 2034 Scenario A

10.3.9 Figure 10.13 to Figure 10.15 present the changes in V/C ratio in the PM peak comparing Scenario B2, C2 and D2 against Scenario A2. The plots show that as the number of houses and car trips increase at Keresley the changes in V/C ratio increase on the local highway network. The plots show the local highway network which the Keresley developments are likely to use; these will include some local residential roads within the area. With Scenario D2 there are increases in V/C ratio of over 20% on Bennetts Road. However, as seen in Figure 10.9 these increases in V/C ratio still keep the V/C ratio between 50% and 75%.

#### **HIGHWAY NETWORK STATISTICS**

10.3.10 Highway network statistics were extracted from each scenario for both AM and PM peak, as shown below in Table 10.4 and Table 10.5. These were extracted from the area presented in Figure 6.7.

**Table 10.4: Keresley Highway Network Statistics AM Peak** 

|                                  |               |               |               | AM PEA        | K   |       |       |          |            |            |
|----------------------------------|---------------|---------------|---------------|---------------|-----|-------|-------|----------|------------|------------|
|                                  | SCENARIO<br>A | SCENARIO<br>B | SCENARIO<br>C | SCENARIO<br>D | B-A | C-A   | D-A   | B-A<br>% | C - A<br>% | D - A<br>% |
| LINK CRUISE TIME<br>(VEH/HRS)    | 2,308         | 2,323         | 2,353         | 2,403         | 15  | 45    | 95    | 1%       | 2%         | 4%         |
| TOTAL TRAVEL TIME<br>(VEH/HRS)   | 3,033         | 3,063         | 3,127         | 3,252         | 30  | 95    | 220   | 1%       | 3%         | 7%         |
| Total Network Delay<br>(Veh/Hrs) | 911           | 923           | 964           | 1,035         | 12  | 54    | 125   | 1%       | 6%         | 14%        |
| Total Travel DISTANCE (VEH/KMS)  | 129,082       | 129,814       | 131,350       | 133,982       | 732 | 2,269 | 4,901 | 1%       | 2%         | 4%         |
| AVERAGE SPEED (KM/H)             | 42.6          | 42.4          | 42.0          | 41.2          | 0   | -1    | -1    | 0%       | -1%        | -3%        |

**Table 10.5: Keresley Highway Network Statistics PM Peak** 

|                                 |                |                |                | AM PEA         | K   |       |       |          |          |            |
|---------------------------------|----------------|----------------|----------------|----------------|-----|-------|-------|----------|----------|------------|
|                                 | SCENARIO<br>A2 | SCENARIO<br>B2 | SCENARIO<br>C2 | SCENARIO<br>D2 | B-A | C-A   | D-A   | B-A<br>% | C-A<br>% | D - A<br>% |
| LINK CRUISE TIME<br>(VEH/HRS)   | 2,434          | 2,451          | 2,489          | 2,559          | 17  | 55    | 125   | 1%       | 2%       | 5%         |
| TOTAL TRAVEL TIME (VEH/HRS)     | 3,065          | 3,086          | 3,140          | 3,240          | 22  | 76    | 176   | 1%       | 2%       | 6%         |
| Total Network Delay (Veh/Hrs)   | 820            | 828            | 852            | 901            | 8   | 32    | 81    | 1%       | 4%       | 10%        |
| Total Travel DISTANCE (VEH/KMS) | 136,155        | 137,011        | 138,936        | 142,397        | 856 | 2,781 | 6,241 | 1%       | 2%       | 5%         |
| AVERAGE SPEED (KM/H)            | 44.4           | 44.4           | 44.2           | 43.9           | 0   | 0     | 0     | 0%       | 0%       | -1%        |

As expected, the growth in demand from Scenario A2 to D2 has led to increases in the total travel time, of up to 7%, increases in network delay; of up to 14% and increases in total travel distance, of up to 5%, however the increases are not particularly concerning. The average speed across the Keresley area also decreases with higher number of houses, with reductions in speed of 1kph from Scenario A2 to D2 in the AM peak; however the reduction in speed is not significant. The changes from Scenario A2 to D2 in travel time and delay do increase by up to 10%, an increase is to be expected as the volume of traffic in the area has increased.

#### **JOURNEY TIME**

- To understand in more detail the impact that the development has, three journey time routes were identified within the model and the time taken for vehicles to travel along these routes was extracted for each scenario in each time period.
- 10.3.13 The journey routes extracted are:
  - → **Journey time route 1**: Between A45/ A4114 junction to Bennett's Road, see Figure 10.16
  - → **Journey time route 2**: Along Tamworth Road from Keresley Road to north of Keresley development, see Figure 10.17
  - → Journey time route 3: Along Bennetts Road from Keresley Road to north of Keresley development, see Figure 10.18

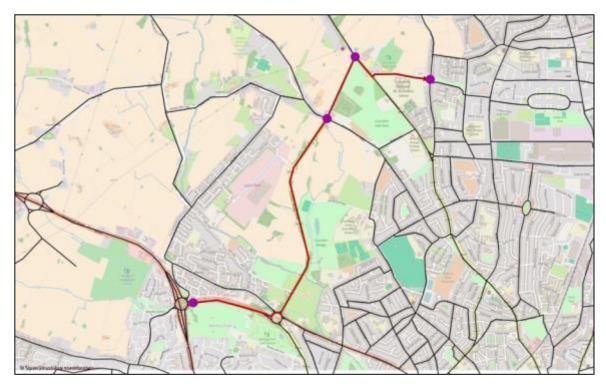



Figure 10.16: Journey Time Route 1



Figure 10.17: Journey Time Route 2

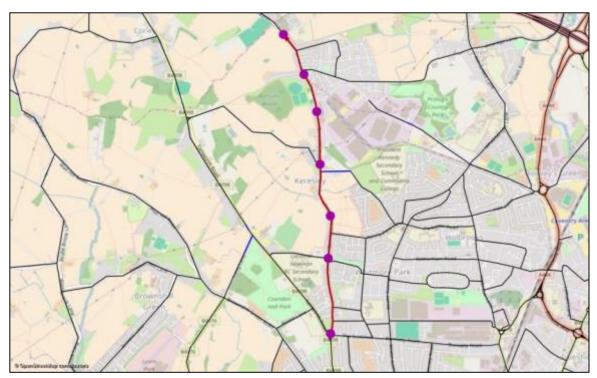



Figure 10.18: Journey Time Route 3

Table 10.6 presents the journey times for each scenario and direction during the AM peak; it also present the percentage increase/ decrease in journey time which occurs compared to the Scenario A.

**Table 10.6: AM Journey Times** 

| Route | DIRECTION | DISTANCE<br>KM | SCENARIO<br>A2 | SCENARIO<br>B2 | Scenario<br>C2 | Scenario<br>D2 | B - A %<br>CHANGE | C - A %<br>CHANGE | D - A %<br>CHANGE |
|-------|-----------|----------------|----------------|----------------|----------------|----------------|-------------------|-------------------|-------------------|
| 1     | NB        | 4.8            | 6min 58s       | 7min 7s        | 7min 18s       | 7min 44s       | 2%                | 5%                | 11%               |
| 1     | SB        | 4.9            | 7min 9s        | 7min 11s       | 7min 23s       | 7min 34s       | 0%                | 3%                | 6%                |
| 2     | NB        | 2.1            | 2min 33s       | 2min 34s       | 2min 34s       | 2min 35s       | 1%                | 1%                | 1%                |
| 2     | SB        | 2.1            | 2min 37s       | 2min 38s       | 2min 38s       | 2min 39s       | 1%                | 1%                | 1%                |
| 3     | NB        | 3.3            | 4min 59s       | 4min 59s       | 5min 1s        | 5min 12s       | 0%                | 1%                | 4%                |
| 3     | SB        | 3.3            | 5min 46s       | 5min 37s       | 5min 46s       | 6min 18s       | -3%               | 0%                | 9%                |

Table 10.6 shows that journey times in the local Keresley area increase as a result of the increasing number of houses at Keresley. The greatest increase in journey times is experienced on route 1 in both directions, between Sandpits Lane and the A45, which is where increases in traffic were identified through the V/C ratio plots. This journey time increases by 46 seconds in Scenario D2, which is an 11% increase. There are also increases in delay along Bennetts Road, which experiences increasing traffic volumes of up to 9%, equating to journey time increases of up to 32 seconds.

Table 10.7 presents the journey times for each scenario and direction during the PM peak; it also present the percentage increase/ decrease in journey time which occurs compared to the Scenario A.

Table 10.7: PM Journey Time

| Route | DIRECTIO<br>N | DISTANCE<br>KM | Scenario<br>A2 | Scenario<br>B2 | Scenario<br>C2 | Scenario<br>D2 | B - A %<br>CHANGE | C - A %<br>CHANGE | D - A %<br>CHANGE |
|-------|---------------|----------------|----------------|----------------|----------------|----------------|-------------------|-------------------|-------------------|
| 1     | NB            | 4.8            | 7min 9s        | 7min 11s       | 7min 19s       | 7min 29s       | 0%                | 2%                | 5%                |
| 1     | SB            | 4.9            | 7min 4s        | 7min 6s        | 7min 4s        | 7min 5s        | 0%                | 0%                | 0%                |
| 2     | NB            | 2.1            | 2min 35s       | 2min 36s       | 2min 35s       | 2min 37s       | 1%                | 0%                | 1%                |
| 2     | SB            | 2.1            | 2min 37s       | 2min 37s       | 2min 38s       | 2min 41s       | 0%                | 1%                | 3%                |
| 3     | NB            | 3.3            | 4min 44s       | 4min 45s       | 5min 0s        | 5min 20s       | 0%                | 6%                | 13%               |
| 3     | SB            | 3.3            | 5min 4s        | 5min 5s        | 5min 16s       | 5min 31s       | 0%                | 4%                | 9%                |

Table 10.7 shows that journey times in the local Keresley area increase as a result of the increasing number of houses at Keresley. The greatest increase in journey times is experienced on route 3 along Bennetts Road in both directions, which is where increases in traffic were identified through the V/C ratio plots. This journey time increases by 36 seconds in Scenario D2, which is a 13% increase. When a planning application comes forward for the 2,300 houses at Keresley detailed junction assessments of the junctions along this route would be required to ensure that delay along routes in the area is minimised. All other increases in journey times are relatively small, between 0 and 3%, up 20 seconds.

#### **LOCALISED TRAFFIC FLOW ANALYSIS**

10.3.18 Changes in traffic flows on local roads around the Keresley development were extracted and compared for all four scenarios. The locations of where traffic flows were extracted are shown in Figure 10.19.

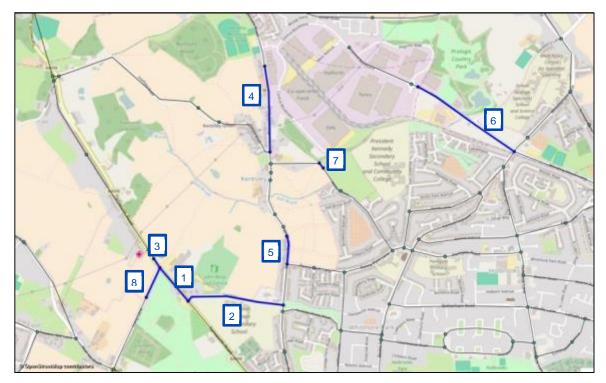



Figure 10.19: Traffic Flow Locations around Keresley Development

Table 10.8 shows the traffic flows in vehicles at the locations illustrated in Figure 10.19 in the AM peak for all four model scenarios as well as the changes in flow within each scenario against Scenario A. The cells are highlighted according to the volume of traffic, green is for flows between 0-250 and flow changes between -100 and 100. The orange cells are for flows between 250-500 and flow changes between -100 to -200 and 100-200. Red cells indicate flows greater than 500 and differences greater than -200 and 200.

Table 10.8: AM Peak Keresley Traffic Flow Changes (vehicles)

| Link   |           |          |          |          | AM       |    |     |     |     |      |      |
|--------|-----------|----------|----------|----------|----------|----|-----|-----|-----|------|------|
| Number | Direction | Scenario | Scenario | Scenario | Scenario | В- | C - | D - | B - | C-A  | D-A  |
|        |           | Α        | В        | С        | D        | Α  | Α   | Α   | Α%  | %    | %    |
| 1      | NB        | 760      | 768      | 797      | 790      | 8  | 37  | 30  | 1%  | 5%   | 4%   |
| 1      | SB        | 895      | 909      | 889      | 861      | 14 | -6  | -34 | 2%  | -1%  | -4%  |
| 2      | EB        | 589      | 594      | 583      | 545      | 5  | -6  | -44 | 1%  | -1%  | -7%  |
| 2      | WB        | 538      | 533      | 560      | 534      | -5 | 22  | -4  | -1% | 4%   | -1%  |
| 3      | NB        | 373      | 397      | 400      | 466      | 24 | 27  | 93  | 6%  | 7%   | 25%  |
| 3      | SB        | 523      | 589      | 636      | 780      | 66 | 113 | 257 | 13% | 22%  | 49%  |
| 4      | NB        | 150      | 162      | 202      | 264      | 12 | 52  | 114 | 8%  | 35%  | 76%  |
| 4      | SB        | 370      | 374      | 391      | 565      | 4  | 21  | 195 | 1%  | 6%   | 53%  |
| 5      | NB        | 151      | 159      | 226      | 263      | 8  | 75  | 112 | 5%  | 50%  | 74%  |
| 5      | SB        | 445      | 453      | 519      | 678      | 8  | 74  | 233 | 2%  | 17%  | 52%  |
| 6      | NB        | 201      | 203      | 209      | 216      | 2  | 8   | 15  | 1%  | 4%   | 7%   |
| 6      | SB        | 9        | 10       | 11       | 14       | 1  | 2   | 5   | 11% | 22%  | 56%  |
| 7      | NB        | 105      | 141      | 191      | 268      | 36 | 86  | 163 | 34% | 82%  | 155% |
| 7      | SB        | 68       | 71       | 208      | 305      | 3  | 140 | 237 | 4%  | 206% | 349% |
| 8      | NB        | 647      | 639      | 619      | 565      | -8 | -28 | -82 | -1% | -4%  | -13% |
| 8      | SB        | 662      | 690      | 764      | 808      | 28 | 102 | 146 | 4%  | 15%  | 22%  |

Table 10.8 shows that the greatest increases in traffic flows occur on Tamworth Road, Bennetts Road and Watery Lane which experience increases in traffic of over 200 vehicles in the southbound direction. For Watery Lane in particular, in Scenario C2 and D2, this represents a very high percentage increase in traffic compared to the volumes of traffic that would use the road in Scenario A2.

10.3.21 Similarly, Table 10.9 shows the traffic flows at the locations illustrated in Figure 10.19 in the PM peak for all four model scenarios as well as the changes in flow within each scenario against Scenario A2. The cells are highlighted in the same way as for the AM Peak.

Table 10.9: PM Peak Keresley Traffic Flow Changes

|                |           |               | PM            |               |               |             |          |          |            |            |            |  |
|----------------|-----------|---------------|---------------|---------------|---------------|-------------|----------|----------|------------|------------|------------|--|
| Link<br>Number | Direction | Scenario<br>A | Scenario<br>B | Scenario<br>C | Scenario<br>D | В<br>-<br>А | C -<br>A | D -<br>A | B -<br>A % | C - A<br>% | D - A<br>% |  |
| 1              | NB        | 887           | 903           | 868           | 885           | 16          | -19      | -2       | 2%         | -2%        | 0%         |  |
| 1              | SB        | 888           | 903           | 909           | 948           | 15          | 21       | 60       | 2%         | 2%         | 7%         |  |
| 2              | EB        | 597           | 599           | 607           | 608           | 2           | 10       | 11       | 0%         | 2%         | 2%         |  |
| 2              | WB        | 589           | 592           | 561           | 543           | 3           | -28      | -46      | 1%         | -5%        | -8%        |  |
| 3              | NB        | 454           | 526           | 534           | 653           | 72          | 80       | 199      | 16%        | 18%        | 44%        |  |
| 3              | SB        | 503           | 549           | 599           | 677           | 46          | 96       | 174      | 9%         | 19%        | 35%        |  |
| 4              | NB        | 331           | 349           | 366           | 538           | 18          | 35       | 207      | 5%         | 11%        | 63%        |  |
| 4              | SB        | 294           | 300           | 341           | 466           | 6           | 47       | 172      | 2%         | 16%        | 59%        |  |
| 5              | NB        | 428           | 432           | 612           | 788           | 4           | 184      | 360      | 1%         | 43%        | 84%        |  |
| 5              | SB        | 286           | 286           | 348           | 450           | 0           | 62       | 164      | 0%         | 22%        | 57%        |  |
| 6              | NB        | 11            | 13            | 16            | 20            | 2           | 5        | 9        | 18%        | 45%        | 82%        |  |
| 6              | SB        | 215           | 218           | 226           | 234           | 3           | 11       | 19       | 1%         | 5%         | 9%         |  |
| 7              | NB        | 118           | 151           | 259           | 356           | 33          | 141      | 238      | 28%        | 119%       | 202%       |  |
| 7              | SB        | 99            | 118           | 172           | 234           | 19          | 73       | 135      | 19%        | 74%        | 136%       |  |
| 8              | NB        | 638           | 676           | 685           | 735           | 38          | 47       | 97       | 6%         | 7%         | 15%        |  |
| 8              | SB        | 686           | 698           | 709           | 696           | 12          | 23       | 10       | 2%         | 3%         | 1%         |  |

- Table 10.9 shows that the greatest increases in traffic flows occur on Bennetts Road and Watery Lane which experience increases in traffic of over 200 vehicles in the northbound direction. For Watery Lane in particular, in Scenario C2 and D2, the increase in traffic flow represents a very high percentage compared to the volumes of traffic that would use the road in Scenario A2.
- Overall the traffic increases, between Scenario A2 and D2, around the Keresley development site, in the AM and PM peak are relatively high, over 200 vehicles on roads such as Tamworth Road, Bennetts Road and Watery Lane. The impacts in percentage terms are greatest on Watery Lane, a residential road, which has low traffic flows in Scenario A2 but experiences an over three fold increase in traffic flow equating to 235 vehicles in the AM peak.

#### **JUNCTION PERFORMANCE**

The CASM HAM does not model highway junctions in detail, but it can highlight junctions which are experiencing more delay in the Keresley scenarios. Figure 10.20 to Figure 10.25 present the increases in average junction delay which occur as the number of houses increases on the development site.

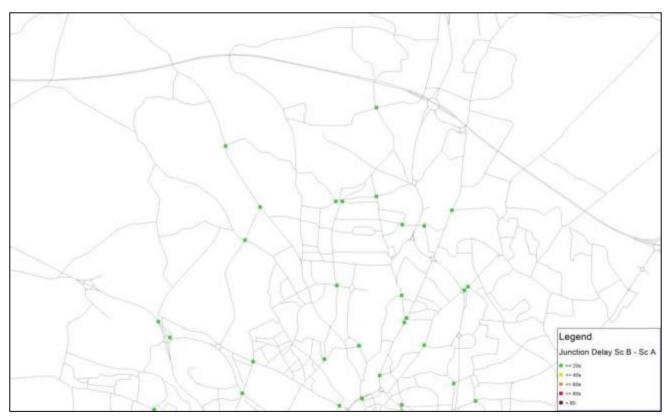



Figure 10.20: AM Peak Keresley Scenario B2 – Scenario A2 Average Junction Delay

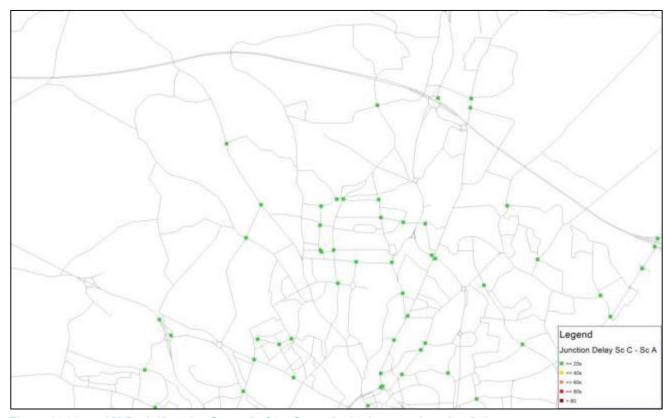



Figure 10.21: AM Peak Keresley Scenario C2 – Scenario A2 Average Junction Delay

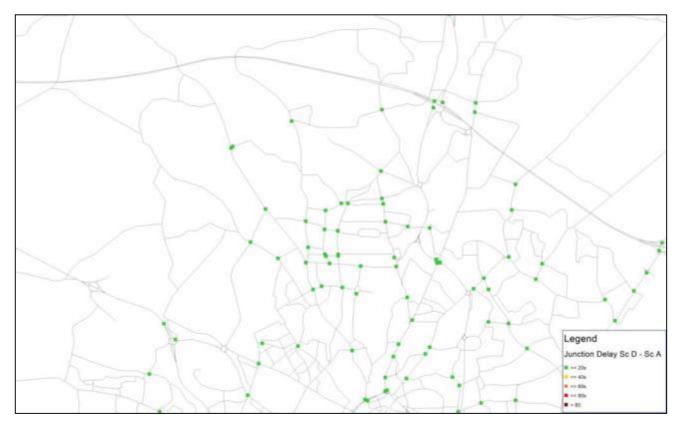



Figure 10.22: AM Peak Keresley Scenario D2 – Scenario A2 Average Junction Delay

10.3.25 Figure 10.20 to Figure 10.22 show the increases in average junction delay that occur in Scenario B2, C2 and D2 compared to Scenario A2. The plots show that as a result of the increase in car trips, there are some increases in average junction delay but these remain 20 seconds or lower, which is not too significant. It would be important that, and when the planning application for the site comes forward detailed junction modelling is undertaken to ensure the junctions around the site operate effectively.

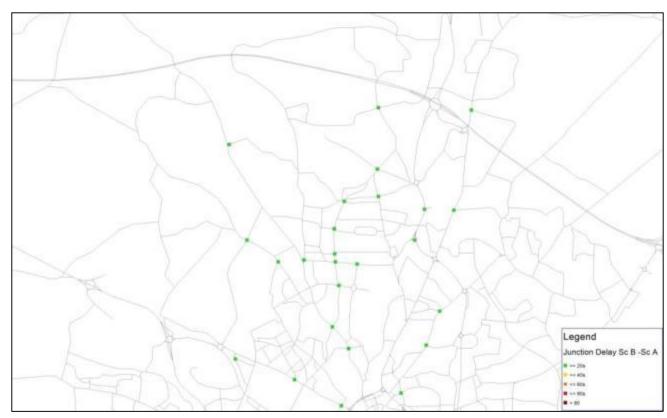



Figure 10.23: PM Peak Keresley Scenario B2 – Scenario A2 Average Junction Delay

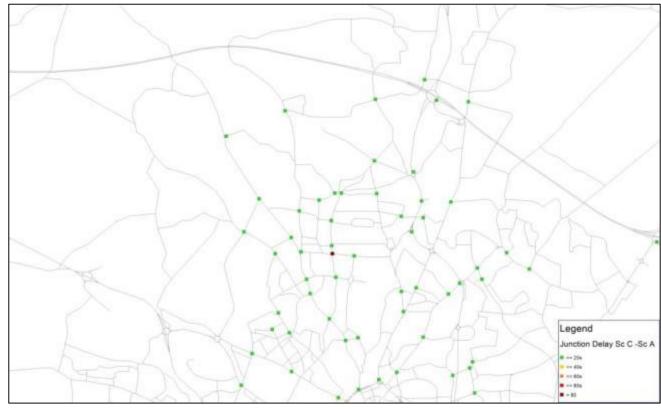



Figure 10.24: PM Peak Keresley Scenario C2 – Scenario A2 Average Junction Delay

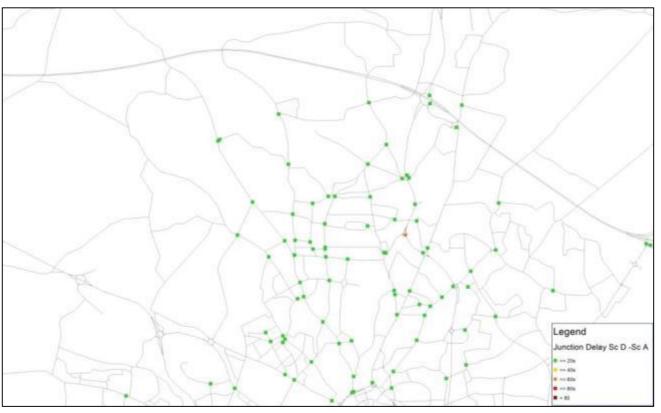



Figure 10.25: AM Peak Keresley Scenario D2 – Scenario A2 Average Junction Delay

10.3.26 Figure 10.23 to Figure 10.25 show the increases in average junction delay that occur in Scenario B2, C2 and D2 compared to Scenario A2. The plots show that as a result of the increase in car trips there are some increases in average junction delay but the majority of these are 20 seconds or lower which is not too significant. There are two junctions in Scenario C2 and D2 which experience average junction delays that are greater than 40 seconds.

- → In Scenario C2 this is the junction between The Scotchill and Beake Avenue which experiences an increase in delay of over 80 seconds. In Scenario D2 however this junction experiences less of an increase in delay as traffic takes different routes.
- → In Scenario D2 an approach to the A444 junction with Holbrook way experiences an increasing delay of between 40 to 60 seconds.

10.3.27 It would be important that, as and when the planning application for the site comes forward detailed junction modelling is undertaken to ensure the junctions around the site operate effectively.

#### 10.4 RESULTS WITH KERESLEY LINK ROAD

- This section of the report presents the CASM outputs for the scenarios with the Keresley Link Road, showing:
  - → Volume Capacity Ratio
  - Network statistics
  - → Journey Times
  - → Traffic Flows

#### **VOLUME CAPACITY RATIO**

- 10.4.2 Figure 10.26 to Figure 10.29 present the change in V/C ratio plots comparing Scenario C1 to C2 and Scenario D1 to D2 (with and without the Keresley Link Road) for both the AM and PM peak.
- The figures show that in both time periods with both 1,900 and 3,100 houses and the Keresley Link Road in place there is an improvement in V/C ratio. This equates to a reduction in traffic on roads in and around the Keresley development including Watery Lane, which experiences the greatest increase in traffic in percentage terms when there is no Link Road. There is however an increase in V/C ratio (more traffic on roads connecting with the Keresley Link Road, as a result of some traffic being drawn into the area to use the new Link Road, including Long Lane and Coudon Wedge Drive.

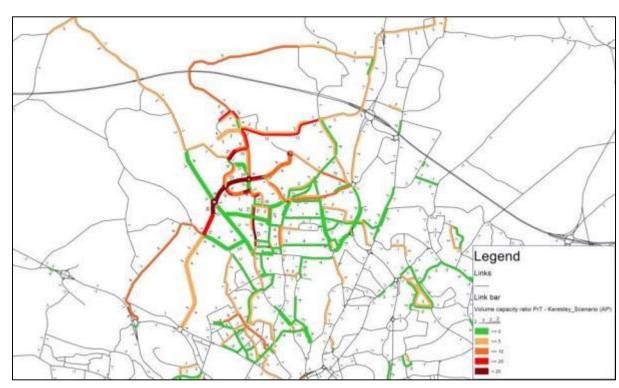



Figure 10.26: AM Peak Volume/Capacity Difference Plot Scenario C1 vs Scenario C2

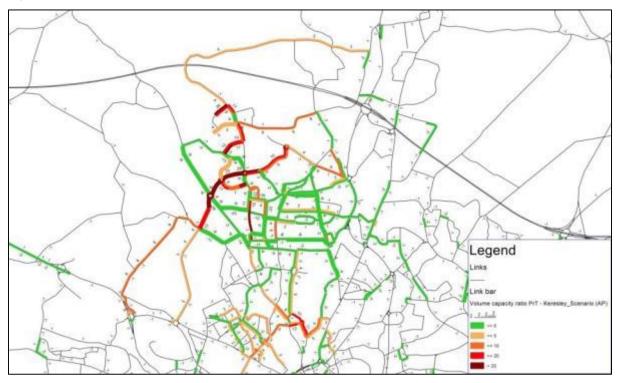



Figure 10.27: AM Peak Volume/Capacity Difference Plot Scenario D1 vs Scenario D2

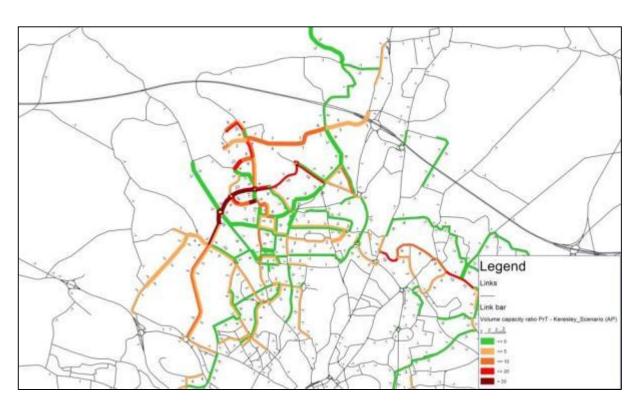



Figure 10.28: PM Peak Volume/Capacity Difference Plot Scenario C1 vs Scenario C2

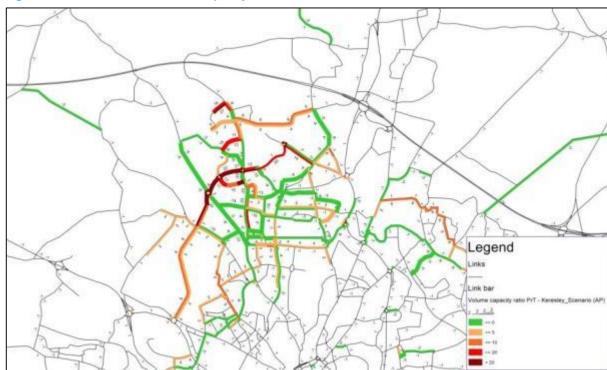



Figure 10.29: PM Peak Volume/Capacity Difference Plot Scenario D1 vs Scenario D2

#### **HIGHWAY NETWORK STATISTICS**

Highway network statistics were extracted from each scenario for both AM and PM peak, as shown below in Table 10.10 and Table 10.11. These were extracted from the area presented in Figure 6.7.

**Table 10.10: Keresley Highway Network Statistics AM Peak** 

|                                       |                |                | AN             | /I Peak        |            |            |              |             |
|---------------------------------------|----------------|----------------|----------------|----------------|------------|------------|--------------|-------------|
|                                       | SCENARIO<br>C1 | Scenario<br>C2 | SCENARIO<br>D1 | SCENARIO<br>D2 | C1 –<br>C2 | D1 –<br>D2 | C1 –<br>C2 % | D1 –<br>D2% |
| LINK CRUISE TIME<br>(VEH/HRS)         | 2,384          | 2,353          | 2,384          | 2,407          | 31         | 3          | 1.3%         | 0.1%        |
| TOTAL TRAVEL TIME (VEH/HRS)           | 3,199          | 3,127          | 3,199          | 3,187          | 72         | -66        | 2.3%         | -2.0%       |
| Total Network Delay (Veh/Hrs)         | 995            | 964            | 995            | 957            | 31         | -79        | 3.2%         | -7.6%       |
| Total Travel<br>Distance<br>(Veh/Kms) | 132,724        | 131,350        | 132,724        | 133,840        | 1,374      | -142       | 1.0%         | -0.1%       |
| AVERAGE SPEED (KM/H)                  | 41.5           | 42.0           | 41.5           | 42.0           | -1         | 1          | -1.2%        | 2.0%        |

Table 10.11: Keresley Highway Network Statistics PM Peak

|                                 |                |                | AN             | 1 Peak         |            |            |              |             |
|---------------------------------|----------------|----------------|----------------|----------------|------------|------------|--------------|-------------|
|                                 | SCENARIO<br>C1 | SCENARIO<br>C2 | SCENARIO<br>D1 | SCENARIO<br>D2 | C1 –<br>C2 | D1 –<br>D2 | C1 –<br>C2 % | D1 –<br>D2% |
| LINK CRUISE TIME<br>(VEH/HRS)   | 2,525          | 2,489          | 2,559          | 2,559          | 36         | -0         | 1.4%         | 0.0%        |
| TOTAL TRAVEL TIME (VEH/HRS)     | 3,174          | 3,140          | 3,223          | 3,240          | 33         | -17        | 1.1%         | -0.5%       |
| TOTAL NETWORK DELAY (VEH/HRS)   | 848            | 852            | 857            | 901            | -3         | -44        | -0.4%        | -4.9%       |
| TOTAL TRAVEL DISTANCE (VEH/KMS) | 140,747        | 138,936        | 142,376        | 142,397        | 1,811      | -20        | 1.3%         | 0.0%        |
| AVERAGE SPEED (KM/H)            | 44.4           | 44.2           | 44.2           | 43.9           | 0          | 0          | 0.2%         | 0.5%        |

- Table 10.10 and Table 10.11 show that, in both the AM and PM peak, in Scenario C1 with the Keresley Link Road in place, there is an increase in travel time and distance travelled in both time periods. However, in the AM peak, there is also a slight increase in network delay and in the PM peak there is a slight reduction. In the AM peak, the average speed reduces with the Link Road, whilst it slightly increases in the PM peak. Overall with 1,900 houses the Keresley Link Road does not have significant improvements on the operation of the highway network in the area.
- However with 3,100 houses in both time periods there are reductions in travel time, delay and travel distance in Scenario D1, compared to Scenario D2; the greatest improvement is in network delays which in the AM peak improve by 7.6%, a reduction in 79 vehicle hours. This indicates that, if a Keresley Link Road were to be built, it would provide the greatest improvements to the local highway network when there is the full build out of houses.

#### **JOURNEY TIMES**

Journey time information was extracted from the CASM models for the , routes shown in Figure 10.30 and Figure 10.31, along with the two routes shown in Figure 10.17 and Figure 10.18.

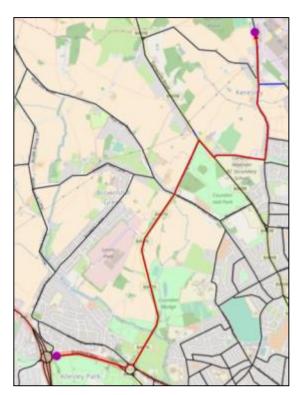



Figure 10.30: Keresley Journey Time 1 without Link Road




Figure 10.31: Keresley Journey Time 1 with Link Road

Table 10.12 presents the journey times with and without the Keresley Link Road during the AM peak.

**Table 10.12: AM Keresley Journey Times** 

| Rоите | DIRECTION | DISTANCE<br>KM (NO<br>LINK ROAD) | DISTANCE<br>(WITH LINK<br>RD) | Scenario<br>C1 | Scenario<br>C2 | Scenario<br>D1 | Scenario<br>D2 | C1 – C2   | D1 – D2   |
|-------|-----------|----------------------------------|-------------------------------|----------------|----------------|----------------|----------------|-----------|-----------|
| 1     | NB        | 6.4                              | 5.7                           | 8min 10s       | 9min 41s       | 8 min 9s       | 10min 6s       | -1min 31s | -1min 57s |
| 1     | SB        | 6.4                              | 5.7                           | 9min 42s       | 11 min         | 9 min 53s      | 11min 38s      | -1min 18s | -1min 45s |
| 2     | NB        | 2.1                              | 2.1                           | 2 min 53s      | 2min 34s       | 2 min 54s      | 2min 35s       | 19s       | 19s       |
| 2     | SB        | 2.1                              | 2.1                           | 2 min 47s      | 2min 38s       | 2 min 50s      | 2min 39s       | 9s        | 11s       |
| 3     | NB        | 3.3                              | 3.3                           | 4 min 48s      | 5min 1s        | 4 min 49s      | 5min 14s       | -3s       | -15s      |
| 3     | SB        | 3.3                              | 3.3                           | 5 min 22 s     | 5min 46s       | 5 min 21s      | 6min 18s       | -24s      | -57s      |

- Table 10.12 shows that some journey times in the Keresley area increase and some reduce as a result of the Link Road being in place. Journey time route 1 with the Keresley Link Road provides a significant reduction in journey time, up to 117 seconds, for both directions. The changes in the journey times with the Keresley are less pronounced for routes 2 and 3 journey time reductions along Bennetts Road and slight increases along Tamworth Road as a result of the new roundabout; which traffic now has to give way too.
- Table 10.13 presents the journey times with and without the Keresley Link Road during the PM peak.

**Table 10.13: PM Keresley Journey Time** 

| Rоите | DIRECTION | DISTANCE<br>KM (NO<br>LINK<br>ROAD) | DISTANCE<br>(WITH LINK<br>RD) | Scenario<br>C1 | Scenario<br>C2 | Scenario<br>D1 | Scenario<br>D2 | C1 – C2   | D1 – D2   |
|-------|-----------|-------------------------------------|-------------------------------|----------------|----------------|----------------|----------------|-----------|-----------|
| 1     | NB        | 6.4                                 | 5.7                           | 8 min 44s      | 11min 58s      | 8 min 50s      | 10min 44s      | -2min 14s | -1min 56s |
| 1     | SB        | 6.4                                 | 5.7                           | 8 min 47s      | 10min 15s      | 8 min 51s      | 10min 28s      | -1min 28s | -1min 37s |
| 2     | NB        | 2.1                                 | 2.1                           | 2 min 54 s     | 2min 35s       | 2 min 56s      | 2min 37s       | 19 s      | 21 s      |
| 2     | SB        | 2.1                                 | 2.1                           | 2 min 50s      | 2min 38s       | 2 min 52s      | 2min 41s       | 12 s      | 11 s      |
| 3     | NB        | 3.3                                 | 3.3                           | 5min 0s        | 5min 0s        | 5 min 8s       | 5min 20s       | 0 s       | - 12 s    |
| 3     | SB        | 3.3                                 | 3.3                           | 4 min 44s      | 5min 16s       | 4 min 50s      | 5min 31s       | - 32 s    | - 41 s    |

Table 10.13 presents similar patterns to the AM peak with significant journey time reductions for route 1 in both directions, with savings up to 134 seconds, with the Keresley Link Road in place. The journey times with the Link Road get slightly slower along Tamworth Road, as a result of the new roundabout and get slightly quicker along Bennetts Road.

#### **LOCALISED TRAFFIC FLOW ANALYSIS**

- 10.4.12 Changes in traffic flows on local roads around the Keresley development were extracted and compared for all four scenarios. The locations of where traffic flows were extracted are shown in Figure 10.19. In addition to this the traffic flows on the Keresley Link Road were extracted between Tamworth Road and Bennetts Road.
- Table 10.14 shows the traffic flows in vehicles at the locations illustrated in Figure 10.19 in the AM peak for all four model scenarios as well as the changes in flow between scenarios with and without the Keresley Link Road. The cells are highlighted according to the volume of traffic, green is for flows between 0-250 and flow changes between -100 and 100. The orange cells are for flows between 250-500 and flow changes between -100 to -200 and 100-200. Red cells indicate flows greater than 500 and differences greater than -200.

Table 10.14: AM Peak Keresley Traffic Flow Changes (vehicles)

| Link   |           |                |                |                | AM             |            |            |             |             |
|--------|-----------|----------------|----------------|----------------|----------------|------------|------------|-------------|-------------|
| Number | Direction | Scenario<br>C1 | Scenario<br>C2 | Scenario<br>D1 | Scenario<br>D2 | C1 –<br>C2 | D1 –<br>D2 | C1 –<br>C2% | D1 –<br>D2% |
| 1      | NB        | 432            | 797            | 437            | 790            | -365       | -353       | -46%        | -45%        |
| 1      | SB        | 670            | 889            | 743            | 861            | -219       | -118       | -25%        | -14%        |
| 2      | EB        | 399            | 583            | 427            | 545            | -184       | -118       | -31%        | -22%        |
| 2      | WB        | 233            | 560            | 221            | 534            | -327       | -313       | -58%        | -59%        |
| 3      | NB        | 308            | 400            | 311            | 466            | -92        | -155       | -23%        | -33%        |
| 3      | SB        | 330            | 636            | 347            | 780            | -306       | -433       | -48%        | -56%        |
| 4      | NB        | 255            | 202            | 255            | 264            | 53         | -9         | 26%         | -3%         |
| 4      | SB        | 552            | 391            | 614            | 565            | 161        | 49         | 41%         | 9%          |
| 5      | NB        | 222            | 226            | 198            | 263            | -4         | -65        | -2%         | -25%        |
| 5      | SB        | 473            | 519            | 483            | 678            | -46        | -195       | -9%         | -29%        |
| 6      | NB        | 205            | 209            | 200            | 216            | -4         | -16        | -2%         | -8%         |
| 6      | SB        | 53             | 11             | 62             | 14             | 42         | 48         | 378%        | 346%        |
| 7      | NB        | 205            | 191            | 181            | 268            | 14         | -87        | 7%          | -33%        |
| 7      | SB        | 229            | 208            | 216            | 305            | 21         | -89        | 10%         | -29%        |
| 8      | NB        | 798            | 619            | 785            | 565            | 179        | 220        | 29%         | 39%         |
| 8      | SB        | 890            | 764            | 899            | 808            | 126        | 91         | 17%         | 11%         |

Table 10.14 shows that with the Keresley Link Road in both scenarios there is a reduction in traffic flow on Tamworth Road, Sandpits Lane and Bennetts Road. There is also a slight reduction in traffic in Scenario D on Watery Lane, although traffic volumes remain higher compared to Scenario A2 when there's only 800 houses at Keresley. There are also traffic flow increases on Long Lane which experiences flow increases as a result of the Keresley Link Road.

Figure 10.32 and Figure 10.33 illustrate the volumes of traffic using the Keresley Link Road. The plots show that traffic volumes are highest at the western side of the link but lower at the eastern end in both scenarios.

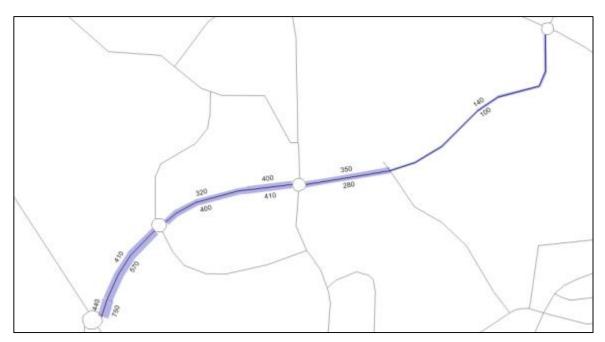



Figure 10.32: AM Peak Scenario C1 Keresley Link Road Traffic

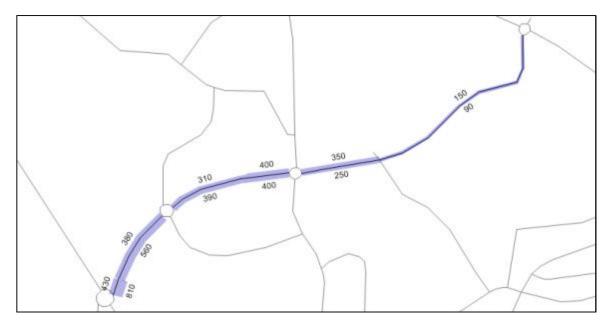



Figure 10.33: AM Peak Scenario D1 Keresley Link Road Traffic

10.4.16 Similarly, Table 10.15 shows the traffic flows in vehicles at the locations illustrated in Figure 10.19 in the AM peak for all four model scenarios as well as the changes in flow between scenarios with and without the Keresley Link Road. The cells are highlighted in the same way as for the AM Peak.

Table 10.15: PM Peak Keresley Traffic Flow Changes

| Link   |           |                |                |                | PM             |            |            |             |             |
|--------|-----------|----------------|----------------|----------------|----------------|------------|------------|-------------|-------------|
| Number | Direction | Scenario<br>C1 | Scenario<br>C2 | Scenario<br>D1 | Scenario<br>D2 | C1 –<br>C2 | D1 –<br>D2 | C1 –<br>C2% | D1 –<br>D2% |
| 1      | NB        | 527            | 868            | 572            | 885            | -341       | -313       | -39%        | -35%        |
| 1      | SB        | 694            | 909            | 730            | 948            | -215       | -218       | -24%        | -23%        |
| 2      | EB        | 409            | 607            | 421            | 608            | -198       | -187       | -33%        | -31%        |
| 2      | WB        | 294            | 561            | 306            | 543            | -268       | -237       | -48%        | -44%        |
| 3      | NB        | 324            | 534            | 339            | 653            | -210       | -314       | -39%        | -48%        |
| 3      | SB        | 455            | 599            | 469            | 677            | -144       | -208       | -24%        | -31%        |
| 4      | NB        | 494            | 366            | 529            | 538            | 128        | -9         | 35%         | -2%         |
| 4      | SB        | 387            | 341            | 424            | 466            | 46         | -42        | 13%         | -9%         |
| 5      | NB        | 446            | 612            | 493            | 788            | -166       | -295       | -27%        | -37%        |
| 5      | SB        | 307            | 348            | 350            | 450            | -41        | -100       | -12%        | -22%        |
| 6      | NB        | 203            | 16             | 202            | 20             | 187        | 182        | 1168<br>%   | 910%        |
| 6      | SB        | 137            | 226            | 136            | 234            | -89        | -98        | -39%        | -42%        |
| 7      | NB        | 132            | 259            | 152            | 356            | -127       | -204       | -49%        | -57%        |
| 7      | SB        | 215            | 172            | 196            | 234            | 43         | -38        | 25%         | -16%        |
| 8      | NB        | 974            | 685            | 1013           | 735            | 289        | 278        | 42%         | 38%         |
| 8      | SB        | 762            | 709            | 787            | 696            | 53         | 91         | 7%          | 13%         |
| 9      | EB        |                |                |                |                |            |            |             | _           |
| 9      | WB        |                |                |                |                |            |            |             |             |

Table 10.15 shows that with the Keresley Link Road in both scenarios there is a reduction in traffic flow on Tamworth Road, Sandpits Lane and Bennetts Road NB. There is also a reductions in traffic in both scenarios on Watery Lane NB. There are also traffic flow increases on Long Lane which experiences flow increases as a result of the Keresley Link Road.

10.4.18 Figure 10.34 and Figure 10.35 illustrate the volumes of traffic using the Keresley Link Road. As in the AM peak, the plots show that traffic volumes are highest at the western side of the link and are very low at the eastern end in both scenarios.

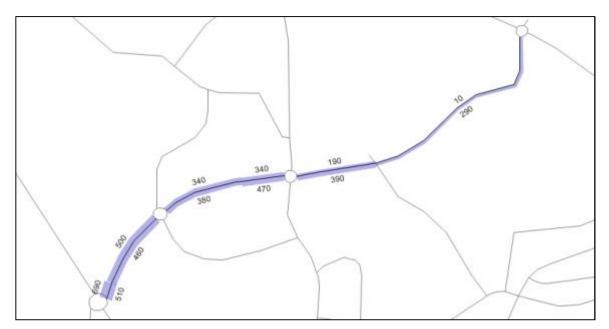



Figure 10.34: PM Peak Scenario C1 Keresley Link Road Traffic

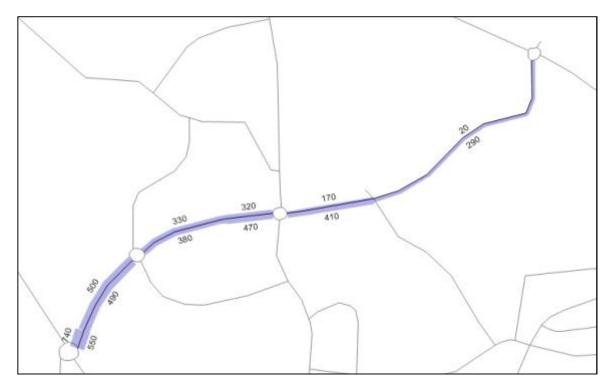



Figure 10.35: PM Peak Scenario D1 Keresley Link Road Traffic

#### 10.5 NUMBER PLATE MATCHING

As a check against the traffic volumes the CASM HAM is predicting for the Keresley Link Road survey data collected in October 2014 in the Keresley area has been drawn upon. In October 2014, WSP commissioned a number plate recognition surveys to analyse traffic flow patterns through the area of the proposed Link Road. Vehicles were counted in both directions at seven locations around the Keresley area. Figure 10.36 shows the location of the counts and the approximate location of the Link Road in blue.

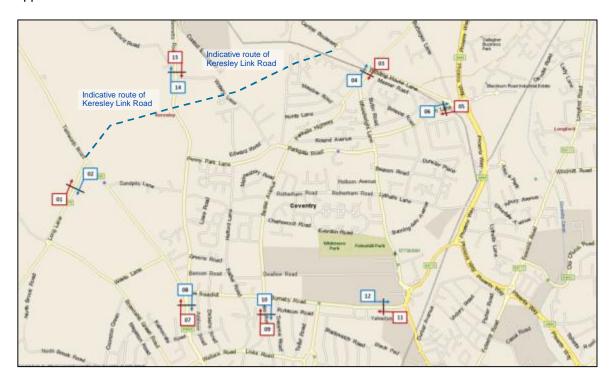



Figure 10.36: Count Locations for ANPR data

- Surveys were analysed and routes selected which could potentially shift to the proposed Link Road for part of it or the whole length. A summary is presented below in Table 10.16.
- A slight note of caution should be applied to these results: because the survey area was relatively tight we cannot be sure of the true origin and destinations of some of these vehicles. We have assumed that matches between particular pairs of cameras will have travelled a sufficient distance for them to re-route towards the Keresley Link Road to complete their journeys. However, it is also possible that some trips will have travelled shorter distances and so re-routing on to the Link Road would not be viable. Therefore, we applied a sensitivity test to some routes assuming only 50% of matched vehicles would shift to the proposed Link Road to provide an upper and a lower band estimate.
- Analysis showed that around 4,390 to 6,035 vehicles, 13 to 18% of all traffic counted across all seven sites between 7am and 7pm, could potentially shift to the proposed road under current conditions. During the morning peak hour this is 420-560 and in the evening peak hour it is 545-750 vehicles (two-way).

- As a comparison to the traffic flows the CASM model is suggesting, an estimate for how many vehicles could be using the road in the future was calculated. To the 2014 observed figures, before any development is considered, we applied 2034 NTEM growth rates. This increased the demand on the full link to 5,270 to 7,250 vehicles per day. (Please note that the NTEM growth factor will include growth from all homes planned around the Coventry area, so some growth is double-counted with the Keresley development. Although any double counting is considered likely to be minimal.)
- 10.5.6 Finally, we added the trips generated by the Keresley development, as predicted by the 2034 CASM HAM. These trips would predominantly use the western end of the link (between Tamworth Road and Bennetts Road South see Figure 10.37), bringing traffic in the peak period up to 1,705 to 1,870 vehicles in the morning peak hour, and 1,945 to 2,190 in the afternoon peak hour (two-way). Again there is an element of double counting with this approach as some of the existing trips in 2014 will form part of the 2034 CASM HAM traffic flows, nevertheless it provides an optimistic scenario for the potential traffic that could use the Link Road. Based on this, we estimate a potential demand of up to 17,850-19,820 vehicles over the day on the western side of the Link Road.

Table 10.16: Potential Traffic Demand for the Keresley Link Road

| Link Number                         | Peak Hour   |             | Peak Period  |              | 12 hour<br>period  |
|-------------------------------------|-------------|-------------|--------------|--------------|--------------------|
|                                     | AM          | PM          | AM (7-9am)   | PM (4-6pm)   | 7:00-19:00         |
| 2014 Potential<br>Demand            | 420-560     | 545-770     | 815 -1,105   | 1,025-1,410  | 4,390-6,035        |
| 2034 Potential<br>Demand            | 505-670     | 655-900     | 980-1,225    | 1,230-1,690  | 5,270-7,240        |
| 2034 demand from development        | 1,200       | 1,290       | 2,335*       | 2,425*       | 12,580*            |
| 2034 demand on<br>Western Link Road | 1,705-1,870 | 1,945-2,190 | 2,315-3,560* | 3,655-4,115* | 17,850-<br>19,820* |

\* These were estimated using the same proportion as the figures for 2014 potential demand

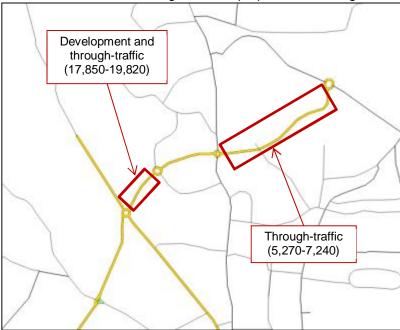



Figure 10.37: Estimated Demand on the Keresley Link Road over a 12-hour period in 2034 (7am-7pm)

#### 10.6 SUMMARY

- This chapter has assessed the impacts of various levels of development at Keresley without the Keresley Link Road and the impacts on the highway network. It has also considered for two scenarios when the Keresley development has 1,900 houses and 3,100 houses the impacts with and without the Keresley Link Road.
- 10.6.2 The assessment without the Keresley Link Road has indicated there are some parts of the highway network which experience an increase in traffic which increases the V/C ratio. These include B4076, Bennetts Road and Brownshill Green. Despite the increase in traffic on these roads the increases do not generate significant issues. There are also increases in traffic on Watery Lane and Penny Park Lane but these remain within a V/C ratio of under 50% which shows there's still a lot of available space on the highway network. The highway network statistics show an increase in network travel time and delay, with slight reductions in average speed however it is not significant, a reduction in 1kph from Scenario A2 to D2. There are also some increases in journey time in the local area as a result of the increased Keresley development, however the maximum journey time increase is 46 seconds over an 11% increase. Traffic flows on the local highway network do increase on some parts quite significantly with increases of over 200 vehicles in one direction on Tamworth Road, Bennetts Road and Watery Lane. Average junction delay increases are low, with some junctions experiencing up to 20 seconds increase and two experiencing over 40 seconds in the PM peak. It would be important that, as and when the planning application for the site comes forward detailed junction modelling is undertaken to ensure the junctions around the site operate effectively.
- 10.6.3 The assessment with the Keresley Link Road for Scenario C and D shows there is an improvement in V/C on local roads around the Keresley area, including Watery Lane. However there is an increase in the V/C ratio and more traffic on roads connecting with the Keresley Link Road, as a result of some traffic being drawn into the area to use the new Link Road, including Long Lane and Coudon Wedge Drive. Highway network statistics show that the Link Road provides most improvement to the highway network performance when 3,100 houses are built. Journey times with the Link Road in place improve the most for movements between A45 and Bennetts Road, with savings up to 135 seconds. With the Keresley Link Road in place there is a reduction in traffic flow on Tamworth Road, Sandpits Land and Bennetts Road, with some reduction on Watery lane. Traffic volumes increase on Long Lane as a result of the Link Road attracting more traffic. The traffic flow on the Keresley Link Road are greater in the west with two way flows approaching 1,250 vehicles. The traffic flow on the eastern section of the road is lower, 300 vehicles as a two way flow. The eastern section of the road could become more popular following improvements to M6 Junction 3 and further development growth in Nuneaton and Bedworth, As a check against the CASM HAM outputs survey data collected in October 2014 was used to try and identify the existing traffic which could potentially use the Link Road in the future. This indicates that by 2034 there could be 17,850-19,820 vehicles using the road daily, with the western part of the Link Road having a lot more trips than the eastern section.

## 11 CASM MODEL REGISTRY

#### 11.1 CASM TDM MODEL RECORD

| SCENARIO   | CASM MODEL VERSION (FILE PATH LINKED)                                                                |
|------------|------------------------------------------------------------------------------------------------------|
| Scenario 1 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                               |
|            | Scenarios\Scenario 1 \\ukcol2app14\Data\05 Coventry\01 NDM Ver Files\Forecasting\2034 CCC Local Plan |
| Scenario 2 | Scenarios\Scenario 3                                                                                 |
| Scenario 3 | \\ukcol2app14\Data\05 Coventry\01 NDM Ver Files\Forecasting\2034 CCC Local Plan Scenarios\Scenario 3 |
| Scenario 4 | \\ukcol2app14\Data\05 Coventry\01 NDM Ver Files\Forecasting\2034 CCC Local Plan Scenarios\Scenario 4 |

#### 11.2 CASM HAM MODEL RECORD

| SCENARIO                       | CASM MODEL VERSION (FILE PATH LINKED)                                        |
|--------------------------------|------------------------------------------------------------------------------|
| 2013 Base Year AM Peak         | CASM_2013_v89_AM_Final.ver                                                   |
| 2013 Base Year PM Peak         | CASM 2013 v89 PM Final.ver                                                   |
| 2034 Scenario 1 AM Peak        | CASM Forecast 2034 LocalPlan v16 AM Sc1 It06 Revised Assigned.ver            |
| 2034 Scenario 1 PM Peak        | CASM Forecast 2034 LocalPlan v16 PM Sc1 06 Revised Signals Assigned.ver      |
| 2034 Scenario 2 AM Peak        | CASM_Forecast_2034_LocalPlan_Sc2_AM_It04_Revised_Assigned.ver                |
| 2034 Scenario 2 PM Peak        | CASM_Forecast_2034_LocalPlan_Sc2_PM_Revised_Signals_It04_Assigned.ver        |
| 2034 Scenario 3 AM Peak        | CASM_Forecast_2034_LocalPlan_Sc3_AM_Revised_It08_Assigned.ver                |
| 2034 Scenario 3 PM Peak        | CASM Forecast 2034 LocalPlan Sc3 PM Revised Signals It08 Update Assigned.ver |
| 2034 Scenario 4 AM Peak        | CASM Forecast 2034 LocalPlan Sc4 AM It10 Revised Assigned.ver                |
| 2034 Scenario 4 PM Peak        | CASM Forecast 2034 LocalPlan Sc4 PM It10 Revised Signals Assigned.ver        |
| Keresley Scenario A AM<br>Peak | CASM Forecast 2034 Kereley Link Road AM ScA Assigned.ver                     |
| Keresley Scenario A PM<br>Peak | CASM_Forecast_2034_Kereley Link Road_PM_ScA_Sig_Asgd.ver                     |
| Keresley Scenario B AM<br>Peak | CASM_Forecast_2034_Kereley Link Road_AM_ScB_Assigned.ver                     |
| Keresley Scenario B PM<br>Peak | CASM_Forecast_2034_Kereley Link Road_PM_ScB_Sig_Asgd.ver                     |
| Keresley Scenario C AM<br>Peak | CASM Forecast 2034 Kereley Link Road AM ScC Assigned.ver                     |
| Keresley Scenario C PM<br>Peak | CASM Forecast 2034 Kereley Link Road PM ScC Sig Asgd.ver                     |
| Keresley Scenario D AM<br>Peak | CASM_Forecast_2034_Kereley Link Road_AM_ScD_Assigned.ver                     |
| Keresley Scenario D PM<br>Peak | CASM_Forecast_2034_Kereley Link Road_PM_ScD_Sig_Asgd.ver                     |

#### 11.3 CASM PTHAM MODEL RECORD

| SCENARIO         | CASM MODEL VERSION (FILE PATH LINKED)                                                                                                                                                                                                 |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scenario 1 and 4 | \\uk.wspgroup.com\ukcentral\Projects\70001991 - CSW WMHA Coventry\D Design and Analysis\Transportation\VISUM\CASM Model Files\Future Year\PTAM\Version Including Future Year Schemes\2034\2034 Coventry Local Plan Schemes\Scenario 3 |
| Scenario 2       | \\uk.wspgroup.com\ukcentral\Projects\70001991 - CSW WMHA Coventry\D Design and Analysis\Transportation\VISUM\CASM Model Files\Future Year\PTAM\Version Including Future Year Schemes\2034\2034 Coventry Local Plan Schemes\Scenario 2 |
| Scenario 3       | \uk.wspgroup.com\ukcentral\Projects\70001991 - CSW WMHA Coventry\D Design and Analysis\Transportation\VISUM\CASM Model Files\Future Year\PTAM\Version Including Future Year Schemes\2034\2034 Coventry Local Plan Schemes\Scenario 3  |

# Appendix A

COVENTRY CITY COUNCIL LOCAL PLAN DEVELOPMENT ASSUMPTIONS

**APPENDIX A-1** 

**LOCAL PLAN DEVELOPMENT ASSUMPTIONS** 

### DATA SOURCES

- → Uncertainty Logs
- Additional Developments from CCC (Whitley South, Lyons Park etc)
- Developments within GIS Layer (that have not been captured in any other source)
- Cross reference against developments within the CCC 2031 Local Plan HAM (given this information was collated 18 months ago)



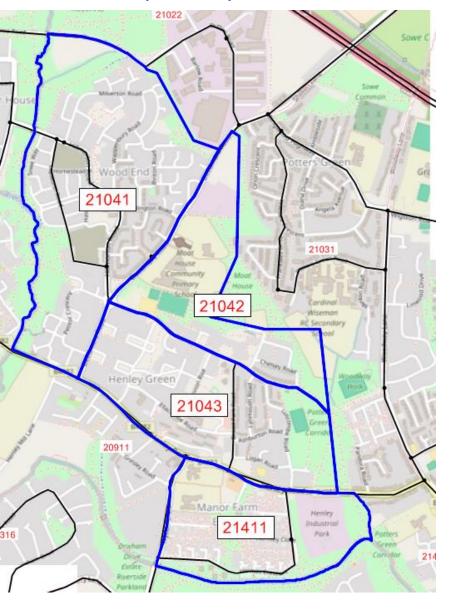
## NTEM CONSTRAINED?

Household and employment growth in Coventry authority constrained to NTEM predictions?

|      | Households | Employment |
|------|------------|------------|
| 2034 | 37,703     | 18,080     |
|      | 25,000     | 18,080     |



## C1: WALSGRAVE HILL FARM


- → Split evenly across 4 zones
- → Schools none

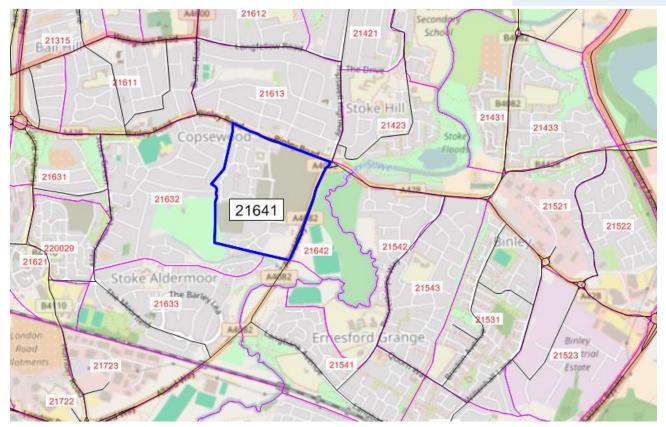


| Year | Dwellings | Population |
|------|-----------|------------|
| 2026 | 700       | 1,661      |
| 2034 | 900       | 2,135      |



## C2 (A+B): MANOR FARM




→ Split evenly across 5 zones

| Year | Dwellings | Population |
|------|-----------|------------|
| 2026 | 855       | 2,028      |
| 2034 | 855       | 2,028      |



## C3A+B: NEW CENTURY PARK

| Year | Dwellings | Population |
|------|-----------|------------|
| 2026 | 674       | 1,599      |
| 2034 | 674       | 1,599      |





## C4A+B: FORMER PEUGEOT SITE

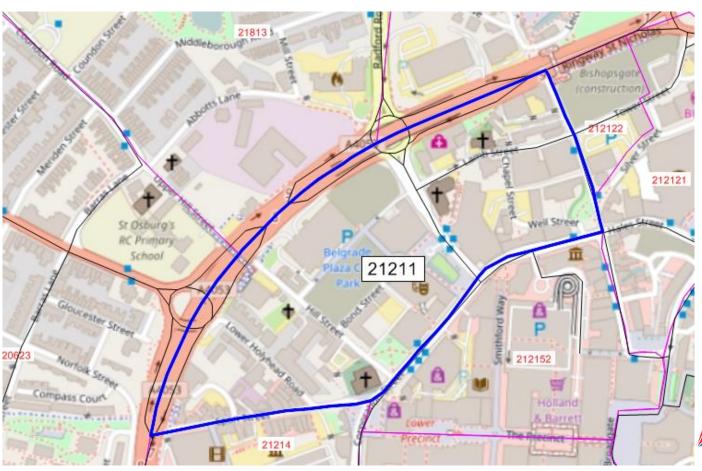



→ Just 220029

| Year | Dwellings | Population |
|------|-----------|------------|
| 2026 | 314       | 745        |
| 2034 | 314       | 745        |

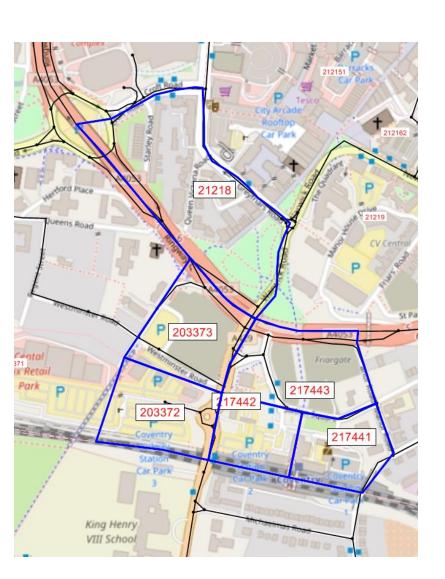


## C5: COVENTRY COLLEGE




| Year | Dwellings | Population |
|------|-----------|------------|
| 2026 | 264       | 626        |
| 2034 | 264       | 626        |




## **C6: EVENING TELEGRAPH SITE**

| Year | Dwellings | Population |
|------|-----------|------------|
| 2026 | 230       | 546        |
| 2034 | 230       | 546        |

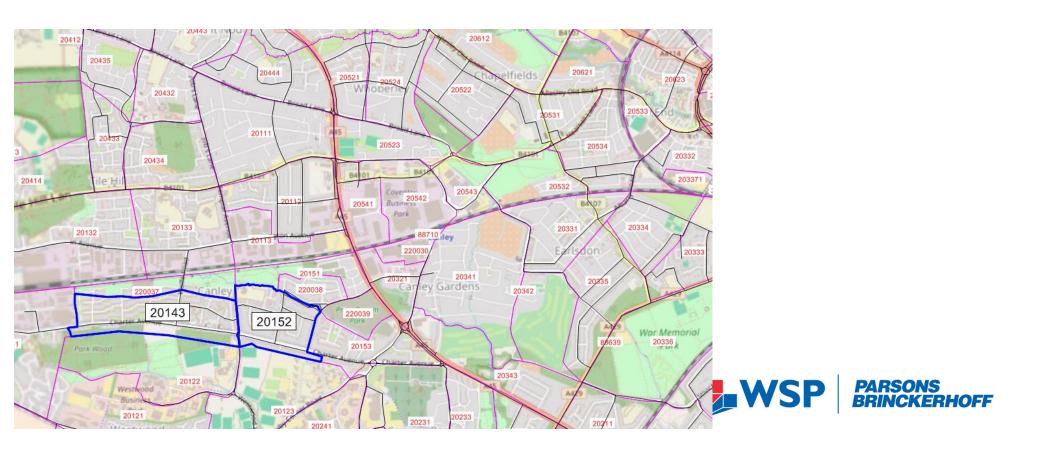




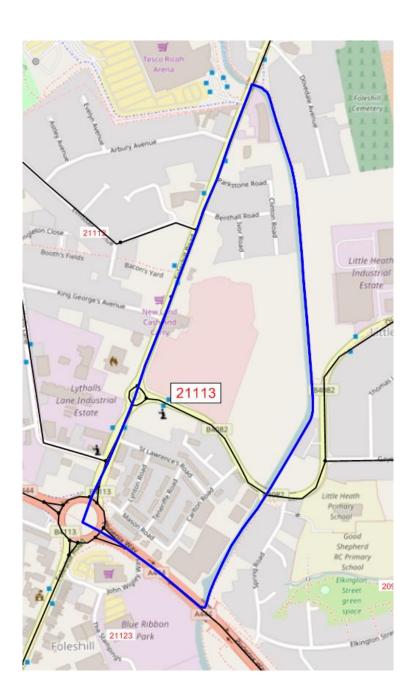
### C7: FRIARGATE



- → Houses Split evenly between 203363, 217443
- → Employment evenly every zone apart from 21218


| Year | Dwellings | Population | Jobs   |
|------|-----------|------------|--------|
| 2019 | 0         | 0          | 1,800  |
| 2026 | 300       | 712        | 11,250 |
| 2034 | 400       | 949        | 15,000 |



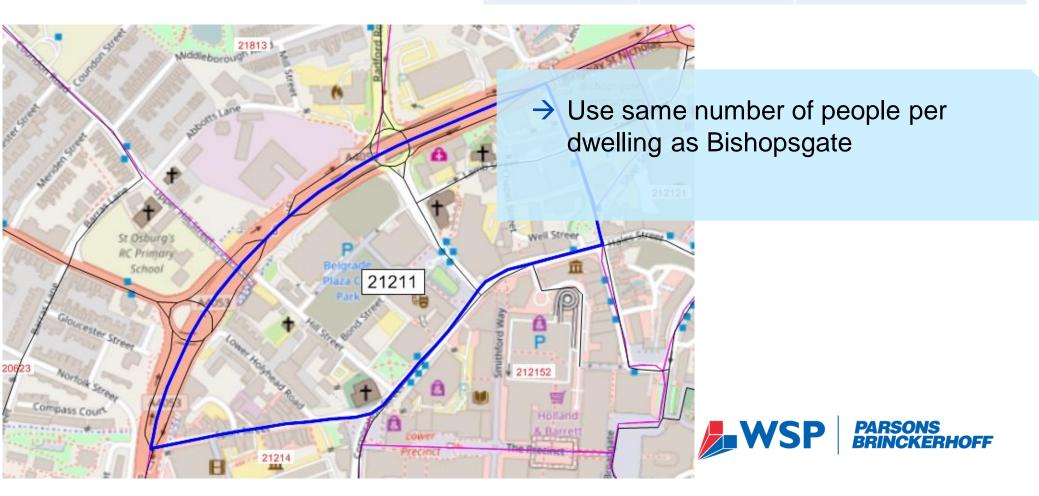

### C8A+B: CANLEY

→ Split evenly across 220037 and 20151

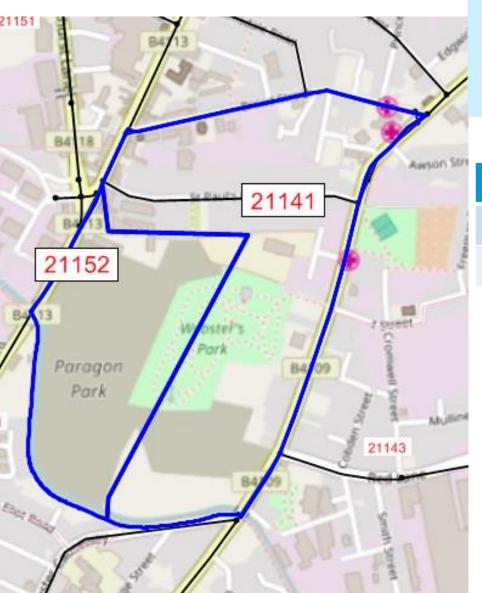
| Year | Dwellings | Population |
|------|-----------|------------|
| 2026 | 481       | 1141       |
| 2034 | 481       | 1141       |



### C9: ACCORDIS, FOLESHILL ROAD




| Year | Dwellings | Population |
|------|-----------|------------|
| 2026 | 344       | 816        |
| 2034 | 344       | 816        |



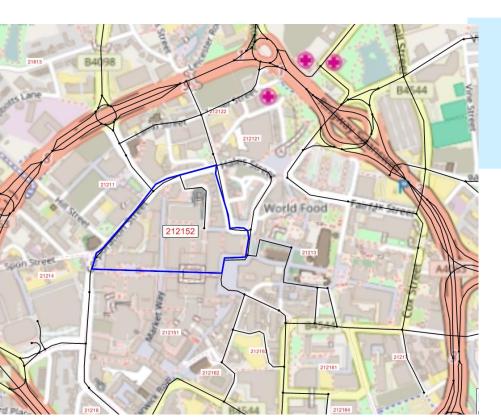

### C10: AXA TOWER, WELL STREET

| Year | Dwellings | Population |
|------|-----------|------------|
| 2026 | 286       | 678        |
| 2034 | 286       | 678        |



### C11: PARAGON PARK




→ Split evenly across 2 zones

| Year | Dwellings | Population |
|------|-----------|------------|
| 2026 | 700       | 1661       |
| 2034 | 700       | 1661       |



#### C12: CENTRAL SHOPPING AREA NORTH

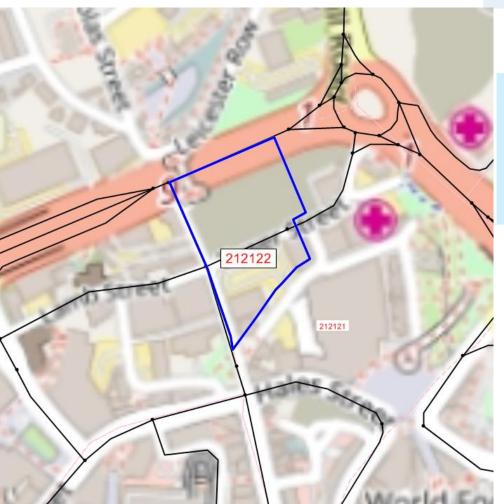
| Year | Dwellings | Population | Jobs |
|------|-----------|------------|------|
| 2026 | 90        | 214        | 0    |
| 2034 | 300       | 712        | 447  |



- → Assumed 10,000 sqm of retail is GFA of High Street Retail (19 sqm per FTE)
- → If, for example, land use was Superstore, there would be 94 jobs



### C13: WILLENHALL TRIANGLE

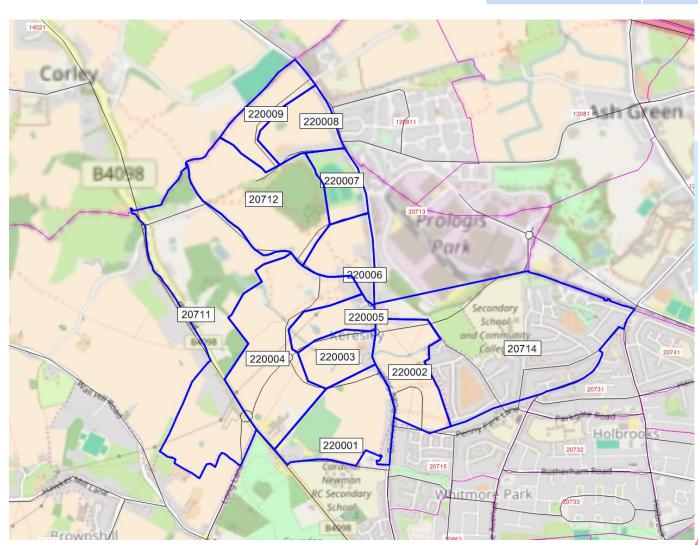

| Year | Dwellings | Population |
|------|-----------|------------|
| 2026 | 255       | 605        |
| 2034 | 255       | 605        |





### C14: BISHOPGATE

| Year | Dwellings | Population |
|------|-----------|------------|
| 2026 | 265       | 1,006      |
| 2034 | 265       | 1,006      |




→ Greater population density, as the dwellings are student accommodation [as agreed by CCC on 13/10/2016]



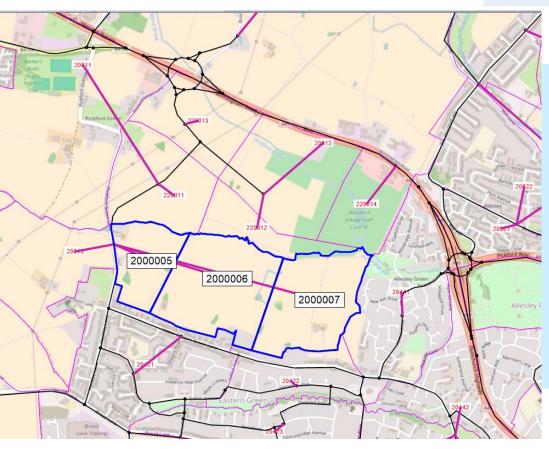
### C15/17/18 KERESLEY

| Year | Dwellings | Population |
|------|-----------|------------|
| 2019 | 50        | 119        |
| 2026 | 1,850     | 4,389      |
| 2034 | 3,100     | 7,354      |



- Schools? Two-form entry primary & 8<sup>th</sup>-form secondary
- → Primary 200001
- → Secondary 200007




### C15/17/18: KERESLEY

| CASM ZONE | Dwellings | Percentage |
|-----------|-----------|------------|
| 220008    | 232       | 7%         |
| 200009    | 232       | 7%         |
| 220007    | 86        | 3%         |
| 200006    | 289       | 9%         |
| 20711     | 67        | 2%         |
| 220004    | 804       | 26%        |
| 220005    | 219       | 7%         |
| 220003    | 218       | 7%         |
| 220001    | 471       | 15%        |
| 220002    | 441       | 14%        |
| 20714     | 43        | 1%         |



#### C16A+B C22: EASTERN GREEN

| Year | Dwellings | Population | Jobs |
|------|-----------|------------|------|
| 2026 | 1175      | 2787       | 4250 |
| 2034 | 2250      | 5338       | 4250 |

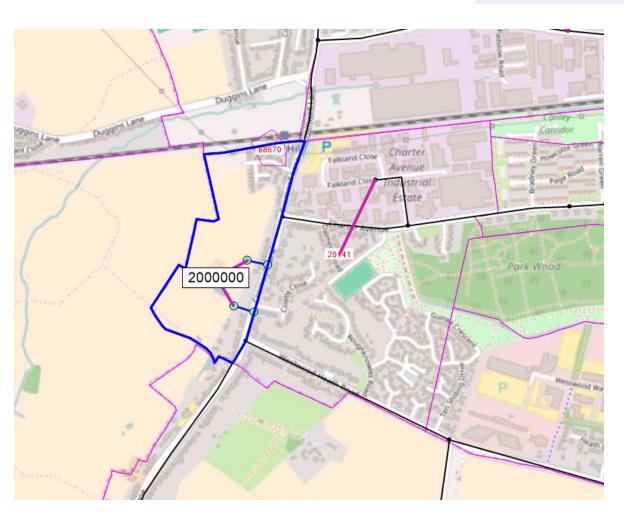


- Associated highway infrastructure is a grade-separated roundabout (not developer internal network)
- → Schools? A two-form primary school locate same location as Eastern Green work
- → Zone 20813 split into zones # 2000005, 2000006, 2000007 (these three zones were previously spare zones).
- → The development is spread across these three new zones and existing zones 20812, 220011, 220012, 2200113 [refer to Eastern Green developer assumptions]



### C19: SUTTON STOP

| Year | Dwellings | Population | Jobs |
|------|-----------|------------|------|
| 2026 | 285       | 676        | 135  |
| 2034 | 285       | 676        | 135  |

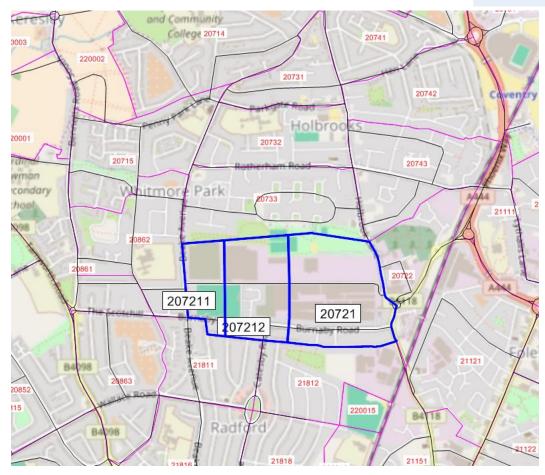



- → 1.5 hectares of B1/B2/B8 floor space 3,800sq/m GI floor space
- → There in 2026 and 2034
- → B1 12m2 per FTE 85 jobs
- → B2 36m2 per FTE 33 jobs
- → B8 70m2 per FTE 17 jobs



### C21: LAND WEST OF CROMWELL LANE

| Year | Dwellings | Population |
|------|-----------|------------|
| 2026 | 240       | 569        |
| 2034 | 240       | 569        |

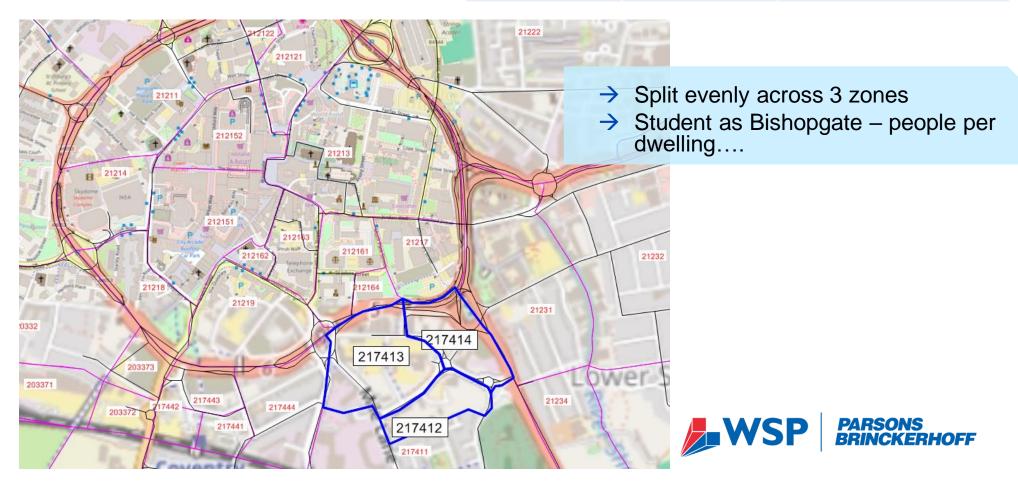



→ Zone 20141 has now been split, development now in zone # 2000000 (previously a spare zone)



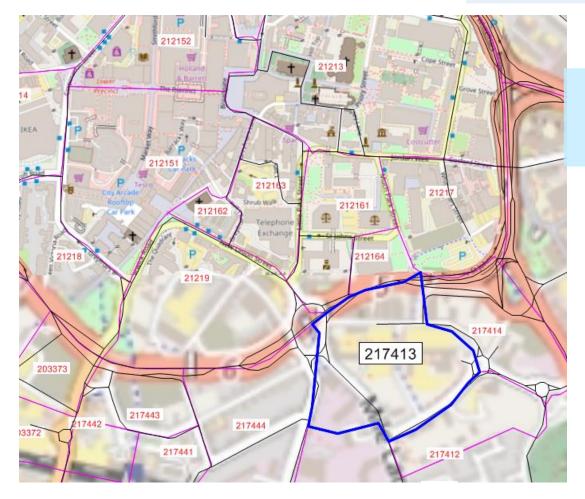
### C23: WHITEMORE PARK

| Year | Dwellings | Population | Jobs |
|------|-----------|------------|------|
| 2026 | 730       | 1732       | 100  |
| 2034 | 730       | 1732       | 100  |




→ Split evenly across 3 zones




### C24: PARKSIDE

| Year | Dwellings | Population |
|------|-----------|------------|
| 2026 | 300       | 712        |
| 2034 | 300       | 712        |



### C25: FORMER FORMULA 1 HOTEL

| Year | Dwellings | Population |
|------|-----------|------------|
| 2026 | 285       | 1082       |
| 2034 | 285       | 1082       |



→ Student as Bishopgate – people per dwelling....




#### C26: TOWN CENTRE

| Year | Dwellings | Population | Jobs |
|------|-----------|------------|------|
| 2026 | 1550      | 3677       | 859  |
| 2034 | 2085      | 4946       | 1191 |

- Cultural Quarter
- Civic Quarter
- Far Gosford St Quarter
- Health and Education Quarter
- Leisure and Entertainment Quarter
- Primary Shopping Quarter
- Technology Park Quarter
- University and Enterprise Quarter
- Fairfax St Regeneration Area
- The Warwick Row Area

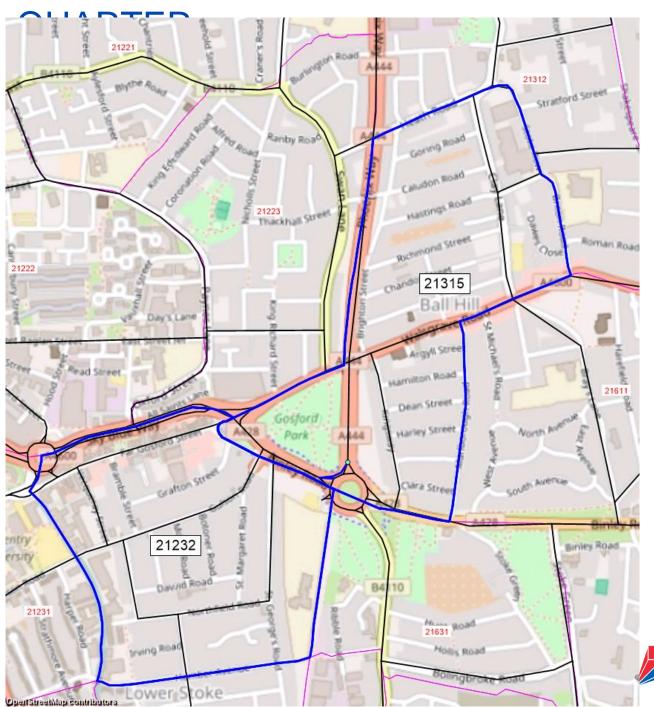


### C26 A: TOWN CENTRE, CULTURAL QUARTER

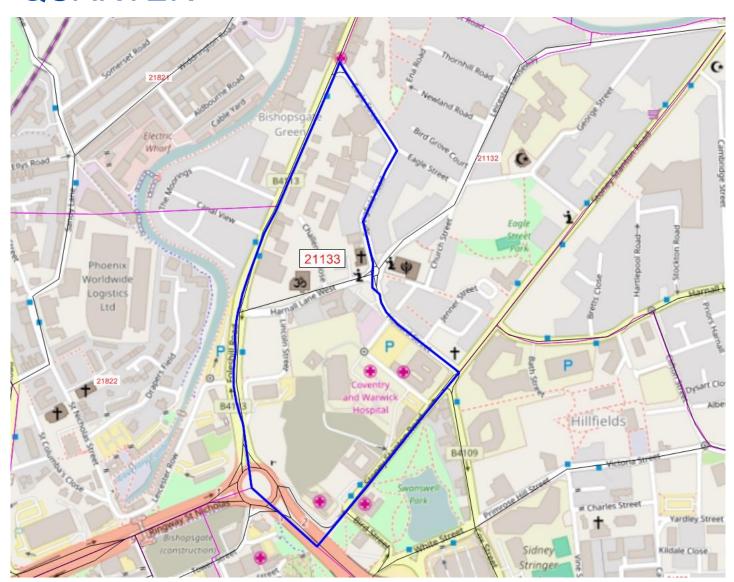


60 student resi – take higher population per dwelling

Just in 212121 in bottom triangle




### C26 B: TOWN CENTRE, CIVIC QUARTER

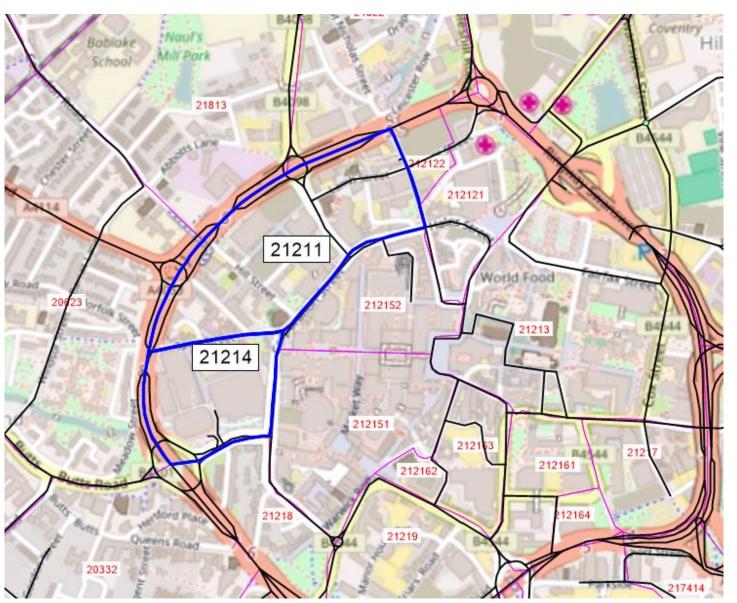





### C26 C: TOWN CENTRE, FAR GOSFORD ST



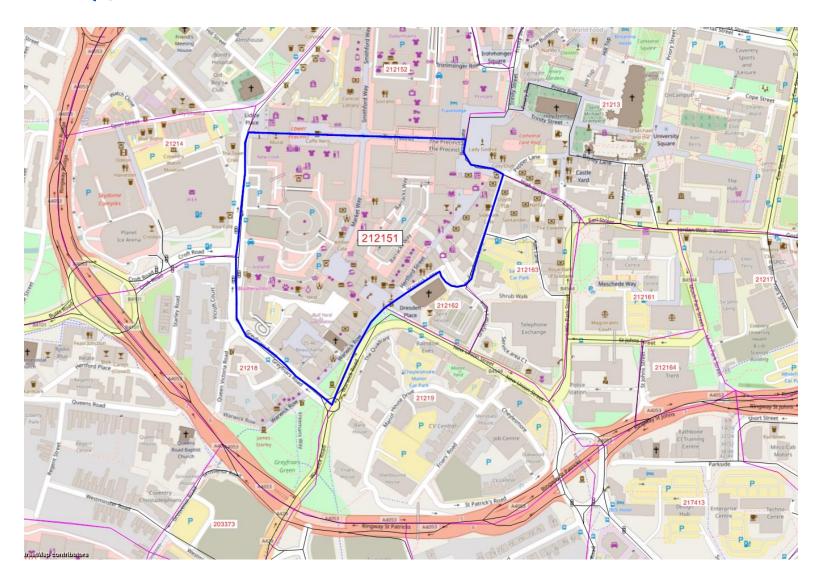
## C26 D: TOWN CENTRE, HEALTH AND EDUCATION QUARTER




student resi – take higher population per dwelling

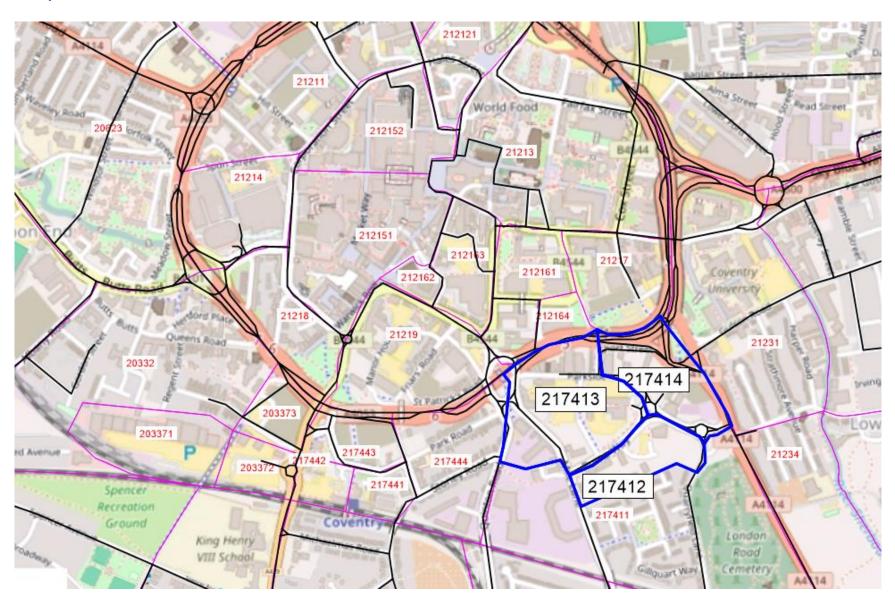
in 21133 zone




## C26 E: TOWN CENTRE, LEISURE AND ENTERTAINMENT QUARTER



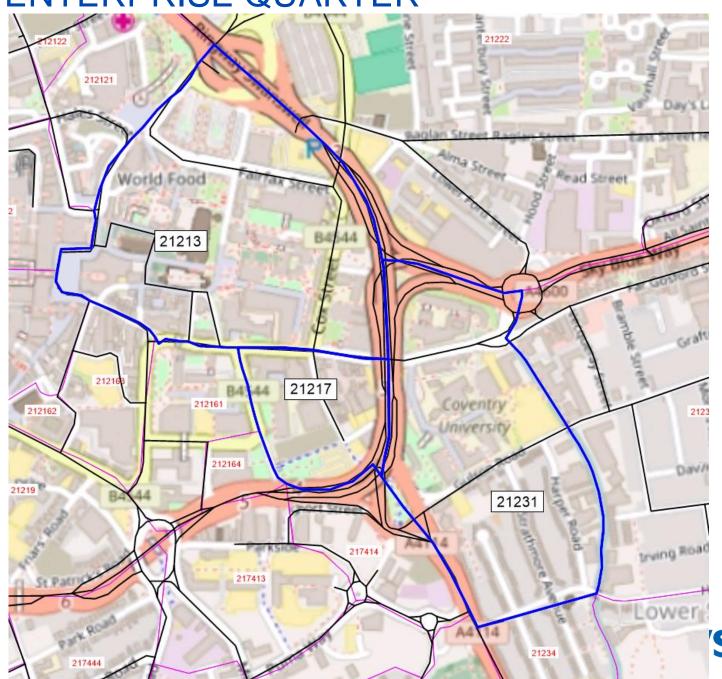
1,000 dwellings half student, half non student




# C26 F: TOWN CENTRE, PRIMARY SHOPPING QUARTER



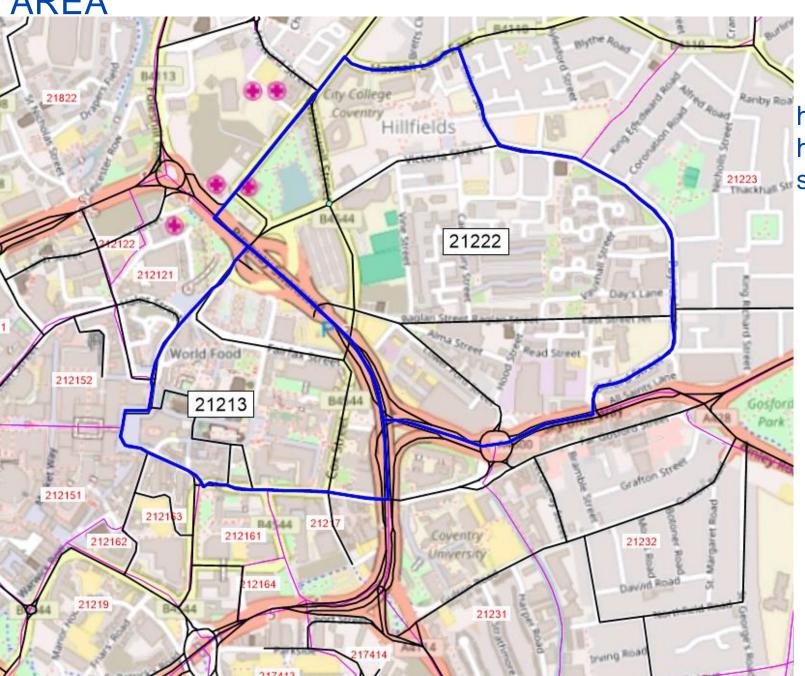



## C26 G: TOWN CENTRE, TECHNOLOGY PARK QUARTER



All 285 dwellings students

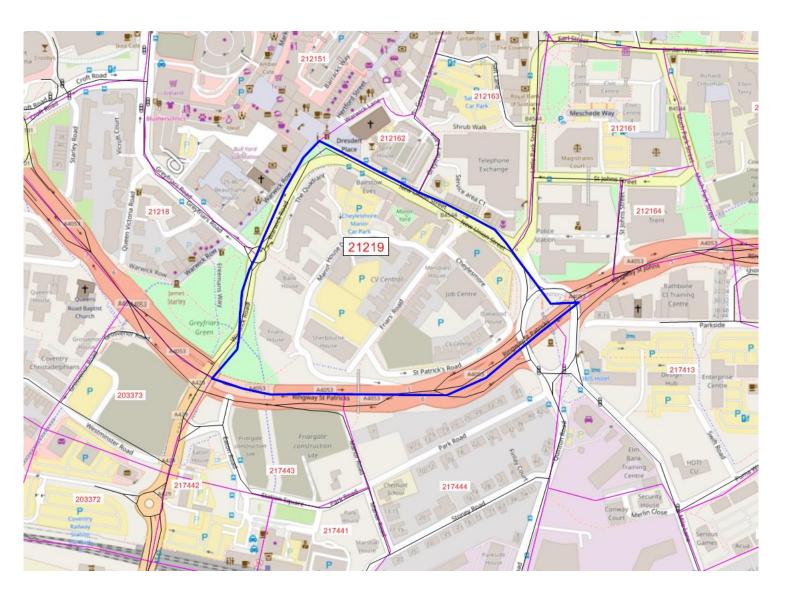



# C26 H: TOWN CENTRE, UNIVERSITY AND ENTERPRISE QUARTER





### C26 I: TOWN CENTRE, FAIRFAX ST REGENERATION


**AREA** 



half student, half non student

**PARSONS** 

### C26J: TOWN CENTRE, THE WARWICK ROW AREA



65 homes student accommodation higher dwelling rate



### ADDITIONAL DEVELOPMENTS FROM CCC



### A1: LYONS PARK



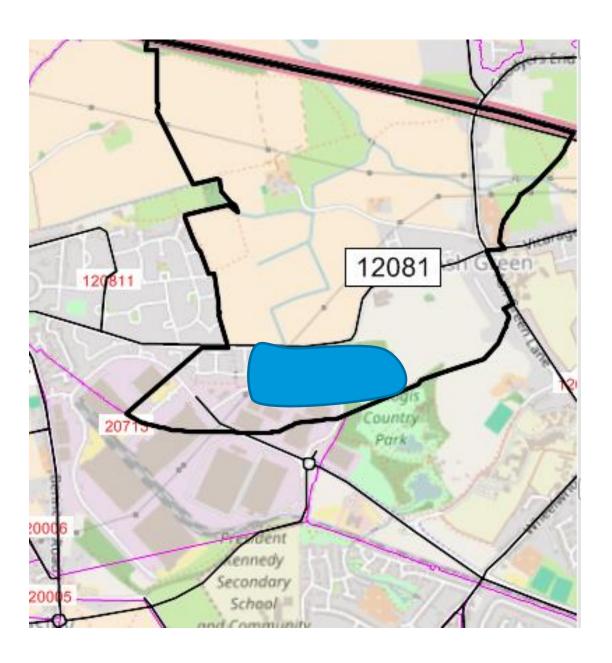
| Year | JOBS  |
|------|-------|
| 2026 | 2,000 |
| 2034 | 2,000 |
|      |       |

- HGV movements associated with employment
- → B8
- → FUL2016 2397 transport statement total trip data CCC data



#### **A2: BROWNS LANE**

| Year | Dwellings | Population |
|------|-----------|------------|
| 2026 | 500       | 1186       |
| 2034 | 500       | 1186       |
|      |           |            |



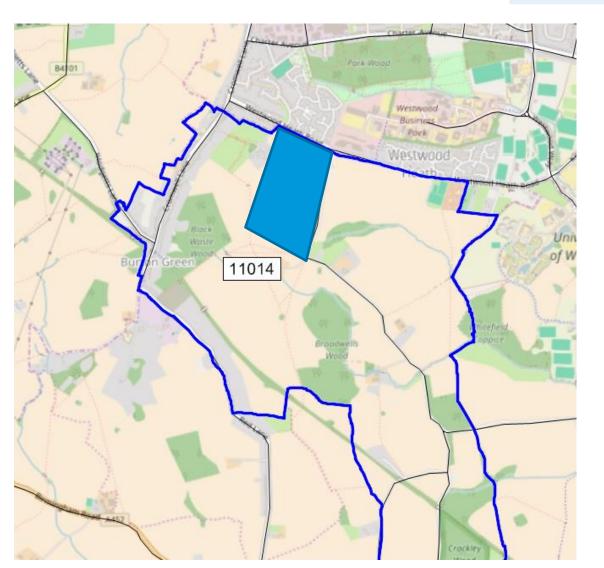

#### New zone – most access Counden Wedge Drive

→ Zone 20832 has now been split, development now in zone # 2000025 (previously a spare zone), with access onto Counden Wedge drive



### A3: KERESLEY PROLOGIS EXPANSION




| Year | Jobs |
|------|------|
| 2026 | 400  |
| 2034 | 400  |

**Nuneaton Uncertainty** 



### A4: WESTWOOD HEATH

| Year | Dwellings | Population |
|------|-----------|------------|
| 2026 | 450       | 1018       |
| 2034 | 450       | 1018       |

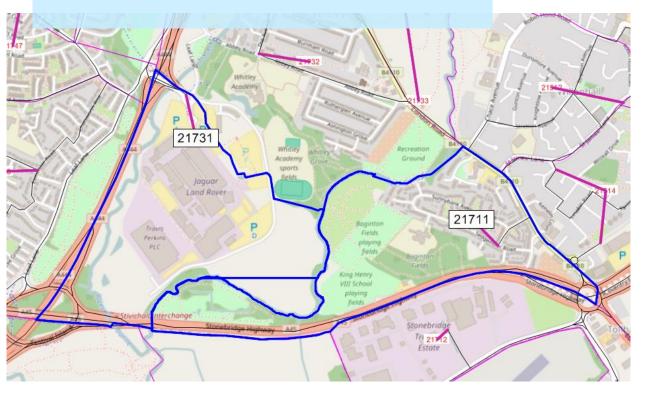


Warwick allocation

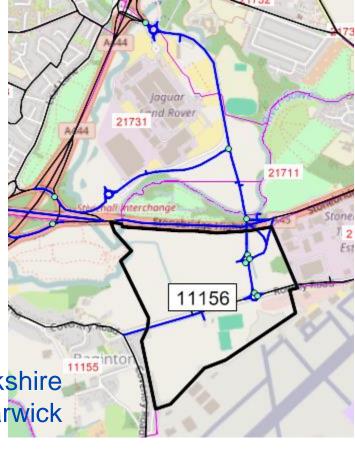


### **A5: KINGS HILL**

| Year | Dwellings | Population |
|------|-----------|------------|
| 2026 | 1800      | 4071       |
| 2034 | 1800      | 4071       |




- → Split evenly across 5 zones
- → 2 form entry primary school
- → Warwick




### A6: WHITLEY SOUTH - CCC ALLOCATION

→ Split evenly across 2 zones



| Jobs |
|------|
| 5000 |
| 5000 |
|      |



7,000 jobs in Warwickshire location – change Warwick uncertainty

### WHITELEY SOUTH NETWORK





## DEVELOPMENTS FROM SHAPEFILE/ DOCUMENTS PROVIDED BY CCC

- → References from GIS Layer
- → MixedUse
  - F44 Durbar
- → Residential:
  - BW38 Land at London road
  - 55 Abbots lane
  - He8b South Elms Farms



### LP1: LAND AT GRANGE HILL FARM

| Year | Dwellings | Population |
|------|-----------|------------|
| 2026 | 105       | 249        |
| 2034 | 105       | 249        |



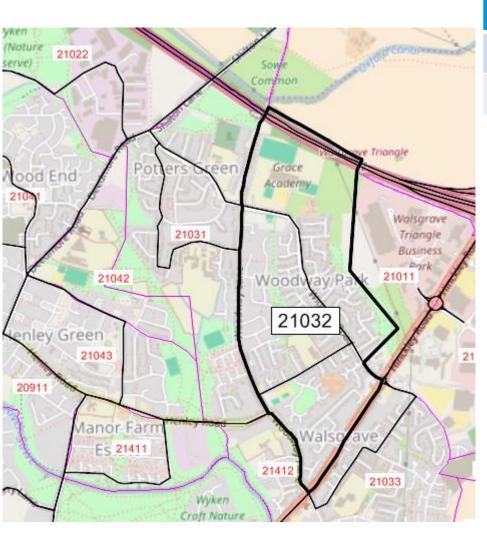


### LP2: LONDON ROAD/ ALLARD WAY



| Year | Dwellings | Population |
|------|-----------|------------|
| 2026 | 150       | 356        |
| 2034 | 150       | 356        |



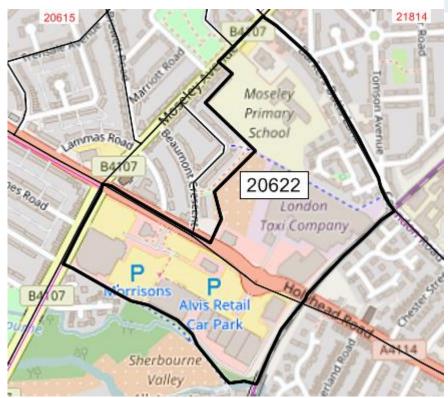

### LP3: FORMER LYNG HALL PLAYING FIELDS

| 2/316            | 20911 | nor Farm<br>Es 21411        |
|------------------|-------|-----------------------------|
| 2 313 per St     | 21441 | Wyk<br>Croft N<br>21442     |
| 21314<br>A4 00 2 | 21612 | 21443<br>(21<br>Ca<br>Secon |

| Year | Dwellings | Population |
|------|-----------|------------|
| 2026 | 185       | 439        |
| 2034 | 185       | 439        |

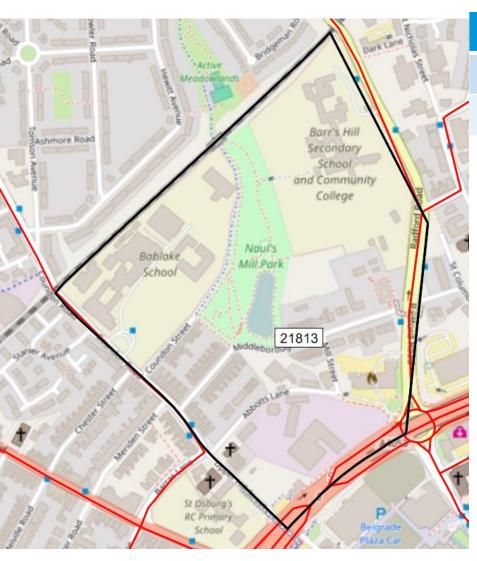


### LP4: ELMS FARM




| Year | Dwellings | Population |
|------|-----------|------------|
| 2026 | 150       | 356        |
| 2034 | 150       | 356        |




### LP5: SITE OF LTI FACTORY, HOLYHEAD ROAD

| Year | Dwellings | Population |
|------|-----------|------------|
| 2026 | 110       | 261        |
| 2034 | 110       | 261        |

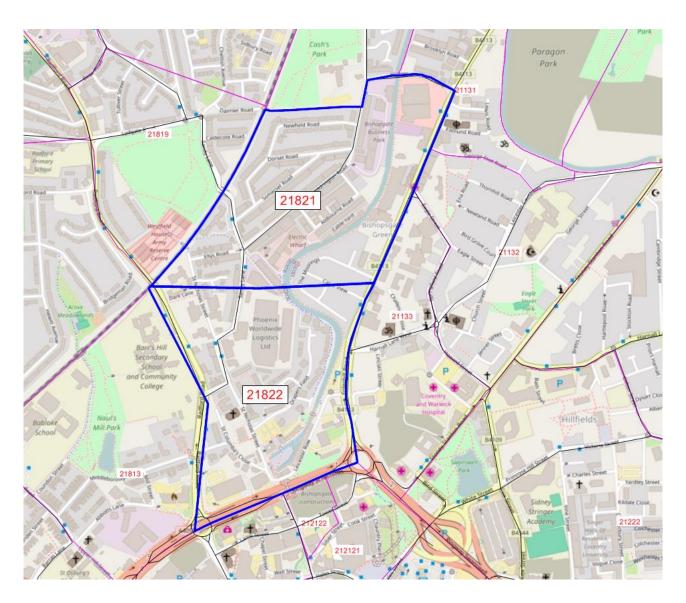




### LP6: FORMER TRANSCO SITE, ABBOTS LANE



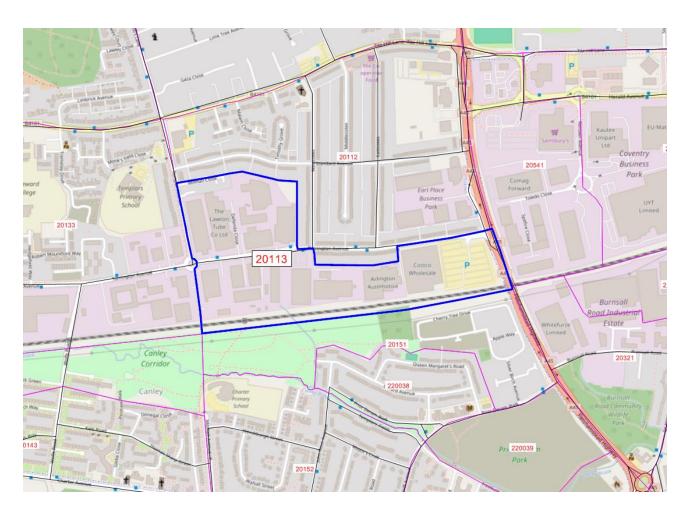
| Year | Dwellings | Population |
|------|-----------|------------|
| 2026 | 100       | 237        |
| 2034 | 100       | 237        |




## DEVELOPMENTS FROM LOCAL PLAN (2031 HAM) NOT CAPTURED BY UNCERTAINTY LOG

- Residential Developments
- **→** Employment Developments

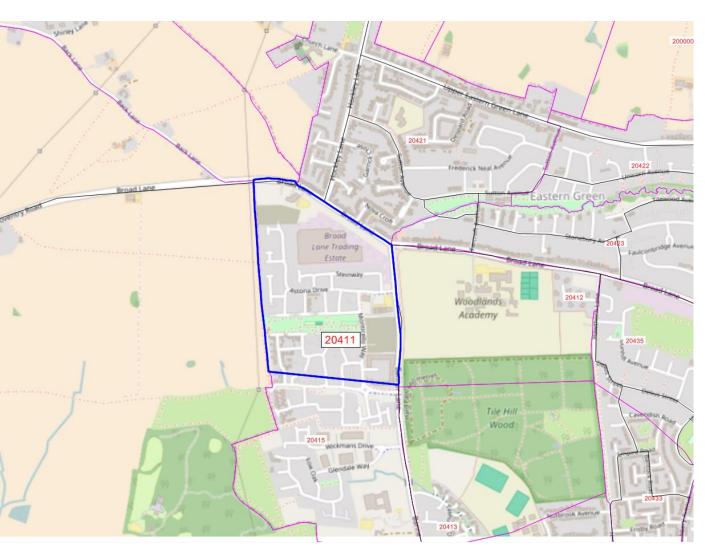



### LP7: CENTRAL DEPOT, FOLESHILL ROAD



| Zone  | Dwellings |
|-------|-----------|
| 21821 | 72        |
| 21822 | 72        |

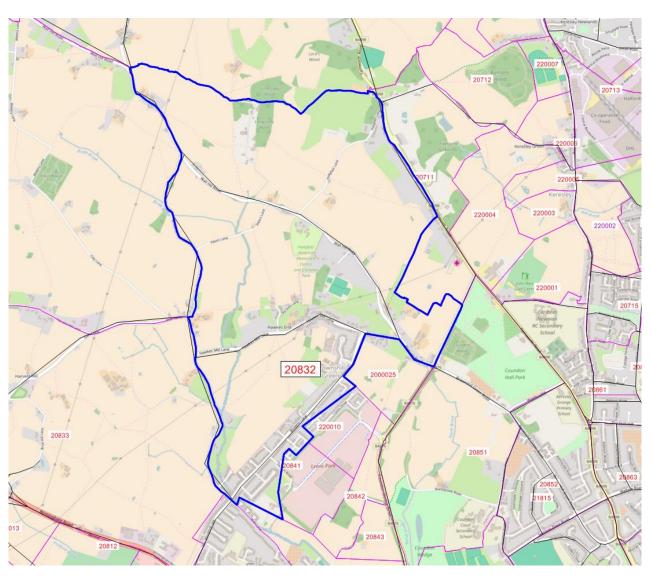



## LP8: FORMER CITY COLLEGE, TILE HILL LANE – PHASE 1, PHASE 2



| Zone  | Dwellings |
|-------|-----------|
| 20113 | 115       |




## LP9: LAND WEST OF BANNER LANE AND SOUTH OF BROAD LANE



| Zone  | Dwellings |
|-------|-----------|
| 20411 | 258       |




## LP10: FORMER JAGUAR EXPANSION LAND, EAST OF BROWNS LANE



| Zone  | Dwellings |
|-------|-----------|
| 20832 | 125       |



### LP11: WARWICK UNIVERSITY EXPANSION



| Zone   | Job |
|--------|-----|
| 111541 | 500 |



# Appendix B

**LOCAL PLAN HIGHWAY ASSUMPTIONS** 

**APPENDIX B-1** 

**LOCAL PLAN HIGHWAY ASSUMPTIONS** 

#### A444 WHITLEY INTERCHANGE / LEAF LANE



| Forecast<br>Year:                 | 2019                                 |
|-----------------------------------|--------------------------------------|
| Location:                         | Coventry                             |
| Scheme<br>ID:                     | 1                                    |
| Scheme<br>Name:                   | A444 Whitley Interchange / Leaf Lane |
| Arbitrary<br>Node in<br>Vicinity: | Node # 2500053                       |

#### **Comments:**

Coded in as per scheme drawing (Creation of a new bridge over the A444 with direct access by a new slip road from the A444 towards Whitley). Within area of simulation, so signalisation incorporated.



## A46/A428 & SOW VALLEY LINK ROAD GRADE SEPARATIONS



| Forecast<br>Year:                 | 2026              |
|-----------------------------------|-------------------|
| Authority :                       | Coventry          |
| Scheme<br>ID:                     | N/A               |
| Scheme<br>Name:                   |                   |
| Arbitrary<br>Node in<br>Vicinity: | Node # 2100112949 |

#### Comments:

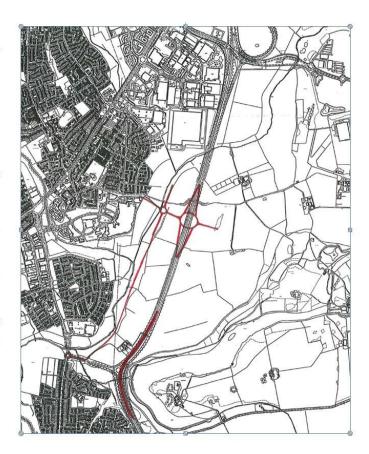
While working on Coventry's Local Plan for Coventry City Council, indicative scheme plans were given to WSP I PB for two highway schemes to be coded into the 2026 HAM (the Eastern Green SUE grade-separated r/b and the A46 Access ]

This scheme involved the creation of a Gradeseparated roundabout on the A46 to the East of Coventry, with an associated connecting roundabout; this scheme sees the removal of the A46/B4082 Walsgrave roundabout and the realignment of the A46.

(see following page for scheme issued to WSP I PB by CCC ]



## A46/A428 & SOW VALLEY LINK ROAD GRADE SEPARATIONS


This junction has been based on a simple roundabout layout with two bridges over the A46.

However the amount of land which the junction utilises is minimal in comparison of Concept Junction 2.

The junction would support linkages to the hospital and the development of Walsgrave Hill Farm.

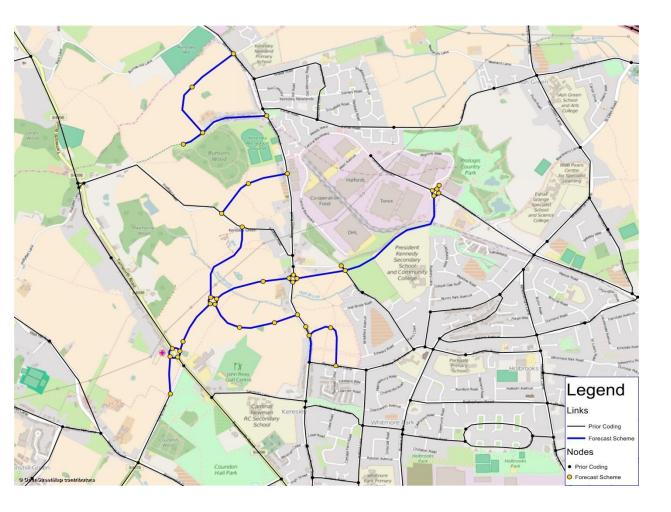
In addition the junction would support linkages to the east and potential development of land to the east of the A46 if Rugby was minded to allocate it for such use.

This junction would allow the removal of the <u>Walsgrave</u> Junction and realignment of the A46.








| Forecast<br>Year:                 | 2019                            |
|-----------------------------------|---------------------------------|
| Location:                         | Coventry                        |
| Scheme<br>ID:                     | 3                               |
| Scheme<br>Name:                   | A46/A428 Junction Signalisation |
| Arbitrary<br>Node in<br>Vicinity: | Node # 2100112148               |

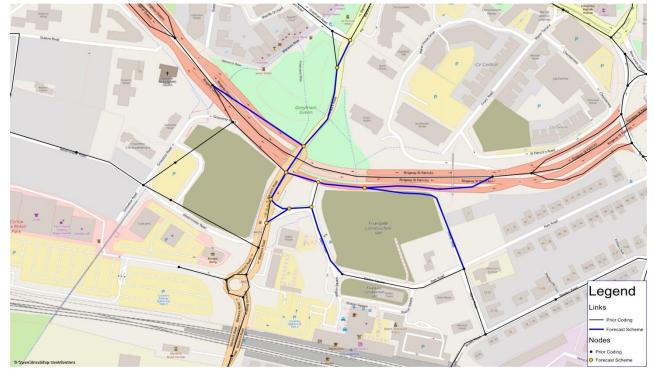
#### **Comments:**

This signalisation had already been incorporated into the 2013 Base Model that the forecast models were based upon.



#### NORTH-WEST LINK ROAD




| Forecast<br>Year:                 | 2026                 |
|-----------------------------------|----------------------|
| Location:                         | Coventry             |
| Scheme<br>ID:                     | 5                    |
| Scheme<br>Name:                   | North-West Link Road |
| Arbitrary<br>Node in<br>Vicinity: | Node # 2100112860    |

#### **Comments:**

Coded as per previous WSP I PB highway modelling work undertaken for Kerseley.



#### **FRIARGATE**



| Forecast<br>Year:                 | 2019           |
|-----------------------------------|----------------|
| Location:                         | Coventry       |
| Scheme ID:                        | 7              |
| Scheme<br>Name:                   | Friargate IRR  |
| Arbitrary<br>Node in<br>Vicinity: | Node # 2500024 |

#### **Comments:**

Coded as per plan sent to WSP I PB by CCC and public domain sources, no scheme drawing provided by AECOM.

Scheme involves the construction of a bridge deck to improve links between Friargate and the city centre by removing the raised roundabout and building a bridge across the ring road, creating a new road layout. The new junction on the new bridge deck to provided access on and off the Ring Road via three new roads. The only movement that will not be provided for is a right turn from Warwick Road onto the Ring Road towards Quinton Road. Following comments from Jacobs, link # 2000037 is closed to traffic in borth directions, as part of the scheme.

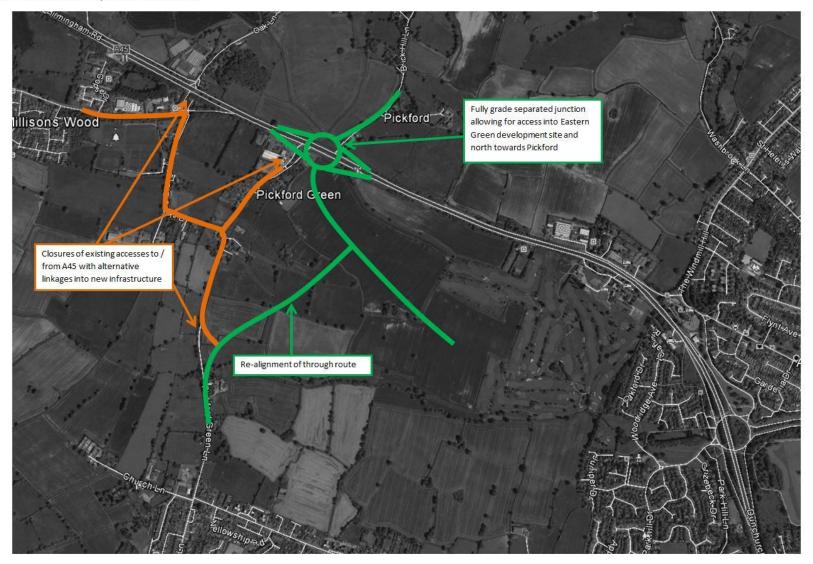


#### **EASTERN GREEN JUNCTION**



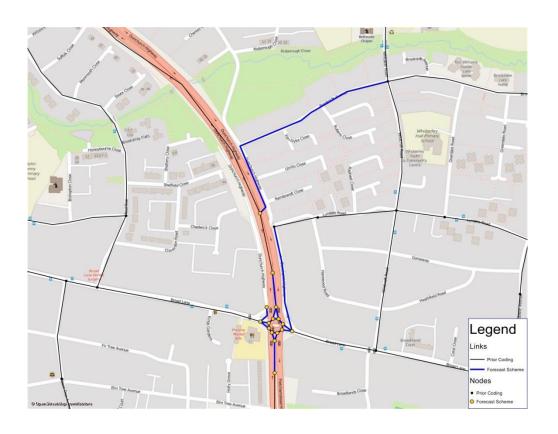
| Forecast<br>Year:                 | 2026                                         |
|-----------------------------------|----------------------------------------------|
| Authority :                       | Coventry                                     |
| Scheme ID:                        | N/A                                          |
| Scheme<br>Name:                   | Eastern Green SUE Grade-Separated Roundabout |
| Arbitrary<br>Node in<br>Vicinity: | Node # 2100112820                            |

#### Comments:


While working on Coventry's Local Plan for Coventry City Council, indicative scheme plans were given to WSP I PB for two highway schemes to be coded into the 2026 HAM (the Eastern Green SUE grade-separated r/b and the A46 Access ]

This scheme involved the creation of a Grade-Separated roundabout on the A45 as part of the associated highway infrastructure to the Eastern Green SUE site, as well as closures to current access points to A45 (see following page for scheme issued to WSP I PB by CCC)




#### **EASTERN GREEN JUNCTION**

A45 / Eastern Green New Grade Separated Junction Indicative





#### BROAD LANE / TILE HILL JUNCTIONS



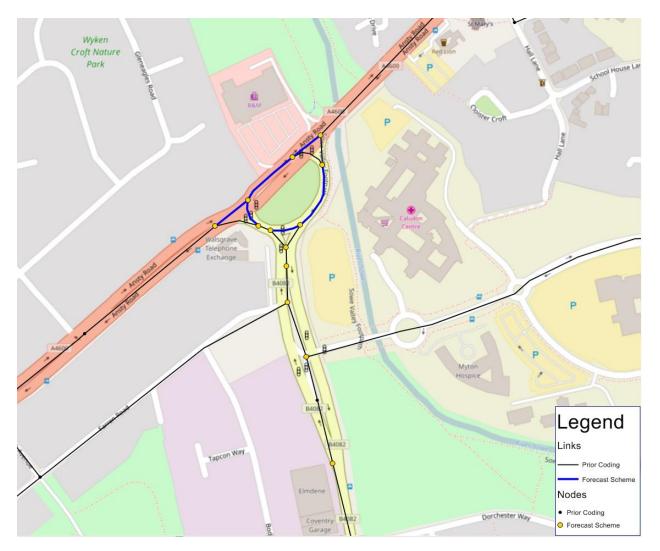
| Forecast<br>Year:                 | 2019                             |
|-----------------------------------|----------------------------------|
| Location:                         | Coventry                         |
| Scheme<br>ID:                     | 9                                |
| Scheme<br>Name:                   | Broad Lane / Tile Hill Junctions |
| Arbitrary<br>Node in<br>Vicinity: | Node # 2100112847                |

#### Comments:

No scheme drawing provided by AECOM, but coded as per public domain sources (http://www.coventry.gov.uk/info/113/regeneration/2072/your city/12 ). As per information from Coventry City Council, this scheme is currently under construction, and as such has been coded in the 2019 forecast scenario and beyond.



#### STONELEIGH ROAD/KENILWORTH ROAD



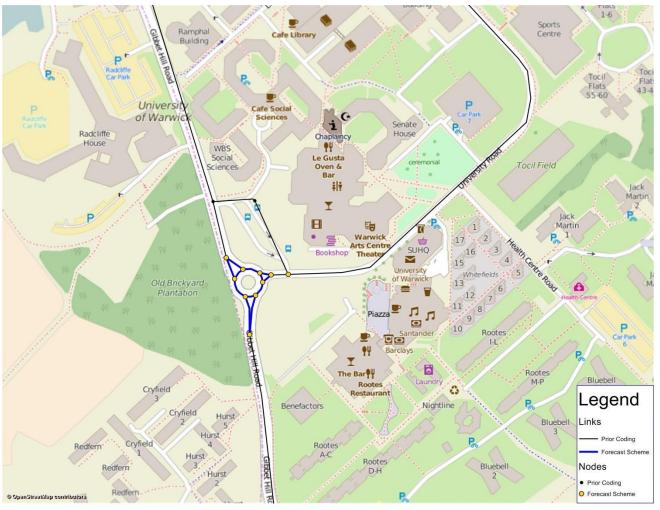

| Forecast<br>Year:                 | 2019                            |
|-----------------------------------|---------------------------------|
| Location:                         | Coventry                        |
| Scheme<br>ID:                     | 10                              |
| Scheme<br>Name:                   | Stoneleigh Road/Kenilworth Road |
| Arbitrary<br>Node in<br>Vicinity: | Node # 2100112724               |

#### **Comments:**

As per information from Coventry City Council, this scheme is currently under construction, and as such has been coded in the 2019 forecast scenario and beyond. Coded as per scheme drawing.






| Forecast<br>Year:                 | 2019           |
|-----------------------------------|----------------|
| Location:                         | Coventry       |
| Scheme<br>ID:                     | 11             |
| Scheme<br>Name:                   | A4600 Hospital |
| Arbitrary<br>Node in<br>Vicinity: | Node # 2500273 |

#### **Comments:**

As per information from Coventry City Council, this scheme is currently under construction, and as such has been coded in the 2019 forecast scenario and beyond. Simulated junction, so signalisation incorporated.



## COVENTRY SOUTH WEST IMPROVEMENTS (WARWICK UNIVERSITY AREA)



| Forecast<br>Year:                 | 2026              |
|-----------------------------------|-------------------|
| Authority :                       | Coventry          |
| Scheme<br>ID:                     | 12                |
| Scheme<br>Name:                   | Coventry SW       |
| Arbitrary<br>Node in<br>Vicinity: | Node # 2100112949 |

#### **Comments:**

Coded in Gibbet Hill Road roundabout as per scheme drawing. Scarman Road not present in Base Model so associated junction not coded in.

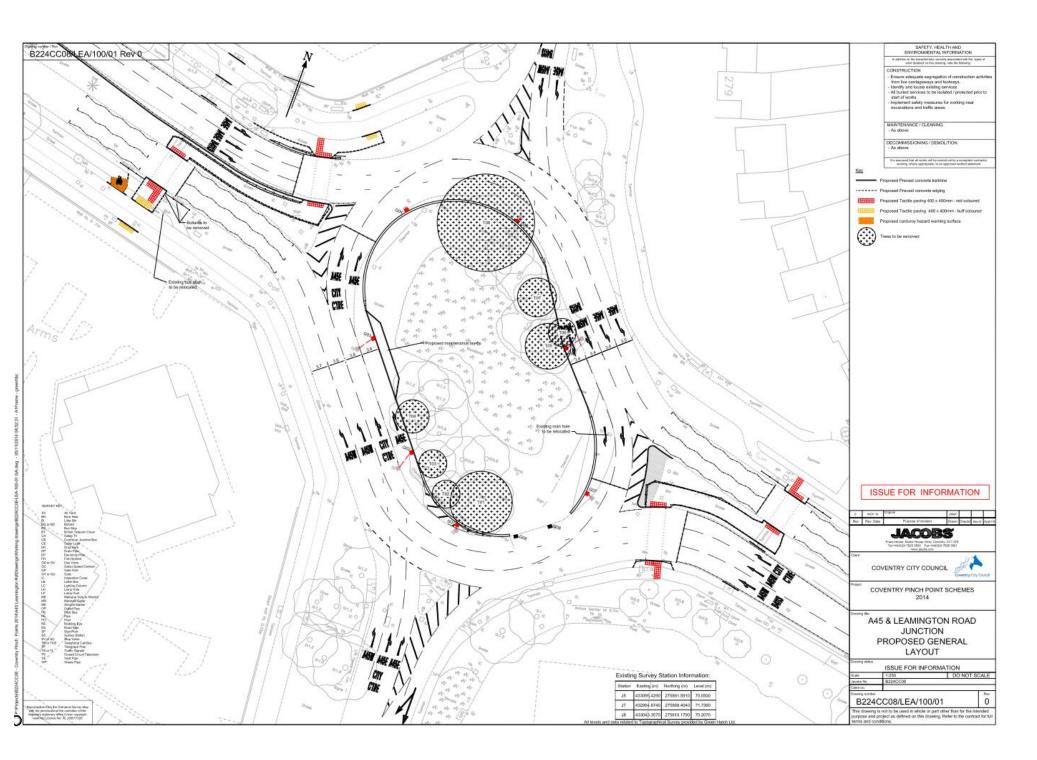


#### HIGHWAY SCHEMES

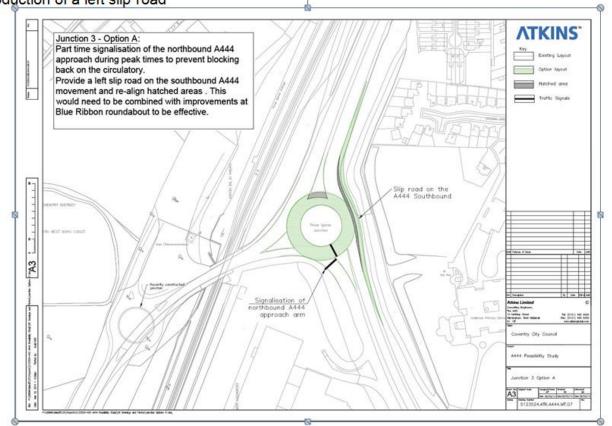
- Schemes within Uncertainty Log have been reviewed with CCC
- → This presentation also outlines the aspirational highway schemes that were included within the 2031 Local Plan HAM



#### **UNCERTAINTY LOG**


| Ref      | Scheme                                            | Certai<br>ntv | Open by | Comments                                                                                                                                       |
|----------|---------------------------------------------------|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                   |               |         |                                                                                                                                                |
| 1        | A444 Whitley Interchange / Leaf Lane              | NC            | 2019    |                                                                                                                                                |
| 2        | A46/A428 & Sow Valley Link Road Grade Separations | MTL           | 2026    |                                                                                                                                                |
|          |                                                   |               |         |                                                                                                                                                |
| 3        | A46/A428 Junction Signalisation                   | NC            | 2019    |                                                                                                                                                |
| 5        | North-West Link Road                              | MTL           | 2026    |                                                                                                                                                |
|          | Binley Rd / Walsgrave Corridor Capacity           |               |         |                                                                                                                                                |
| 6        | Enhancement                                       | MTL           | 2026    |                                                                                                                                                |
| 7        | Friargate IRR                                     | NC            | 2019    |                                                                                                                                                |
| 8        | Ring Road Junction 1 & 9                          | MTL           | 2026    | To be coded, also Junctions 4 and 5 (2026) to be coded also [scheme plans received for J1, 4 & 5] J5 has no associated highway network changes |
| 9        | Broad Lane / Tile Hill Junctions                  | MTL           | 2026    |                                                                                                                                                |
| <b>J</b> | Dioda Lario / Tile i illi dariotions              | 10111         | 2020    |                                                                                                                                                |
| 10       | Stoneleigh Road/Kenilworth Road                   | MTL           | 2019    |                                                                                                                                                |
| 11       | A4600 Hospital                                    | MTL           | 2019    |                                                                                                                                                |
| 12       | Coventry SW                                       | MTL           | 2026    |                                                                                                                                                |
| 14       | Coventry Ring Road Junction 2                     | MTL           | 2019    | To be coded, scheme plan received Stoneleigh Phase One to be coded                                                                             |
| 15       | A46 / A45 South-west Link                         | MTL           | 2034    | only (not entire link road)                                                                                                                    |

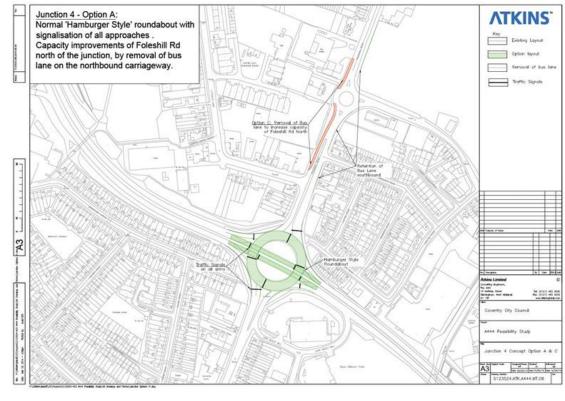


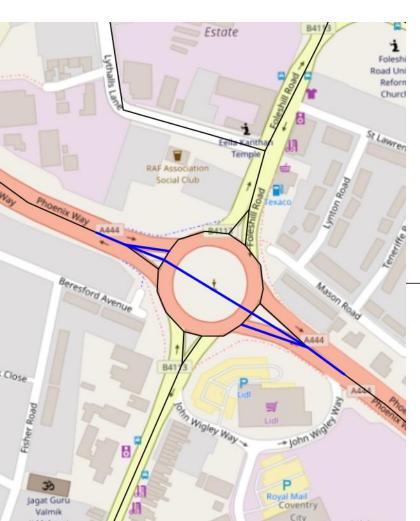

# HIGHWAY SCHEMES WITHIN THE 2031 LOCAL PLAN<sup>16</sup> HAM BUT THAT ARE NOT IN THE 2034 HE FORECAST HAM

- → A45 / Leamington Rd
- → A444 / Holbrook Way
- → A444 / Foleshill Rd
- → A444 / Bell Green Rd
- → A444 / Binley Rd
- → Paragon Park Accesses
- → Whitley South Access



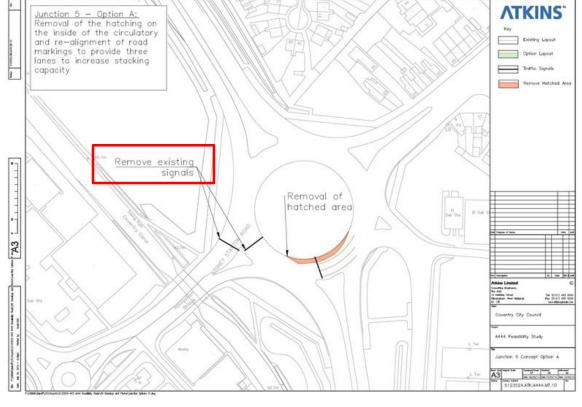


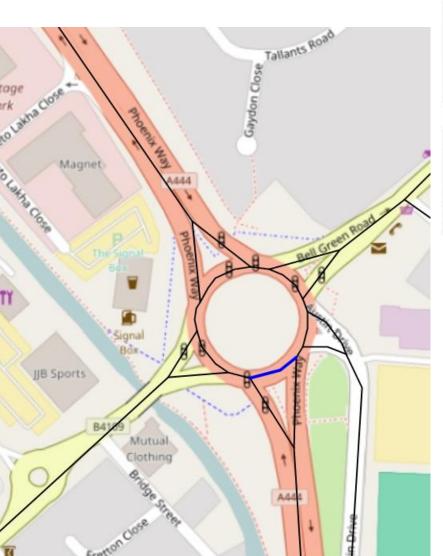

A444/Holbrook Way (£659k) - Partial Signalisation of the A444 / Holbrook Way Roundabout ar introduction of a left slip road





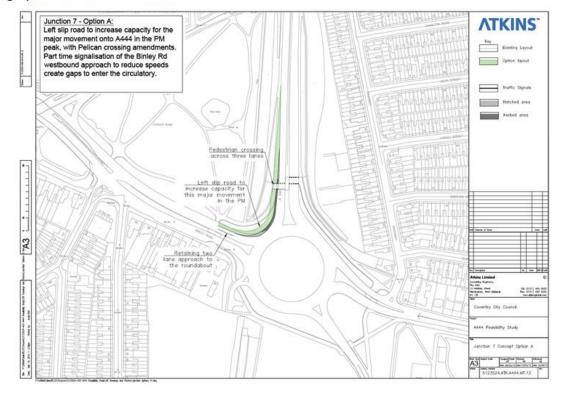




**A444/Foleshill Road (£3.98M)** - Signalisation of existing roundabout and conversion to a "hamburger" junction. Remove or amend existing bus lane and downstream roundabout on Foleshill road.









#### A444/Bell Green Road (£68k)- Remarking to widen the carriageway increase circulatory capacity



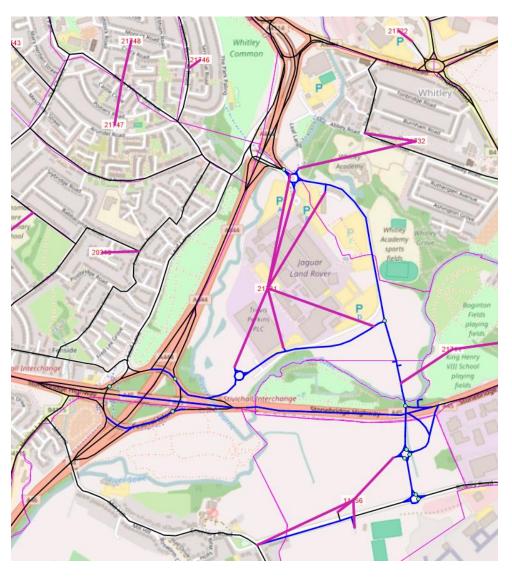




A444/Binley Road (£1.64M) - Partial Signalisation and left slip road from SkyBlue Way on the A444 northbound and realignment of the Humber Road and Binley Road arms to create additional stacking space on the main traffic island.

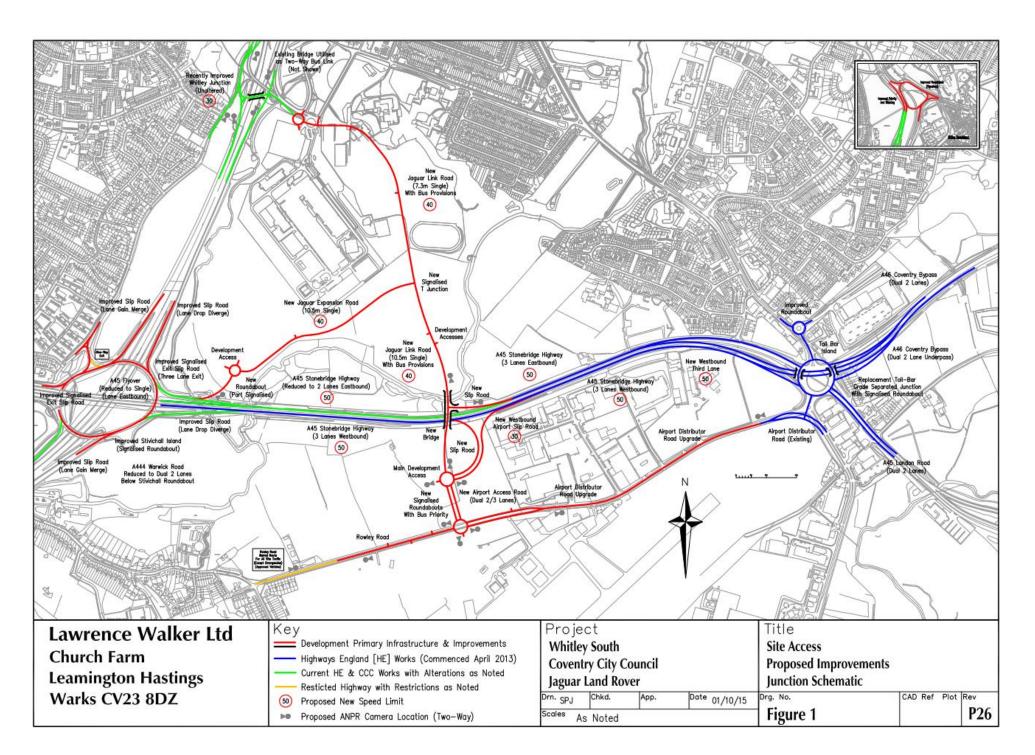




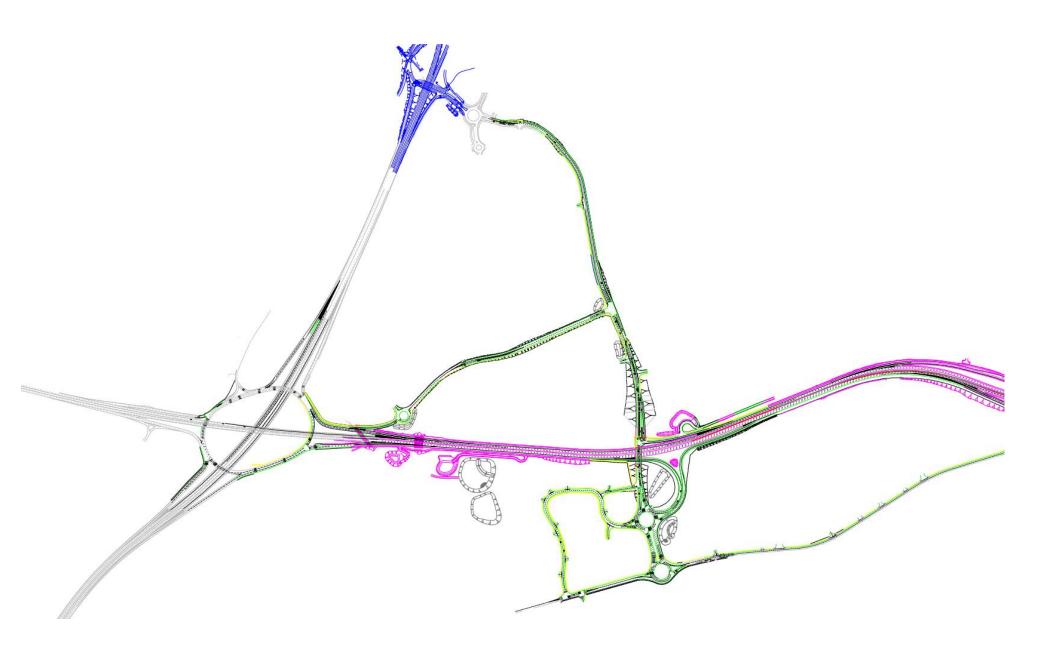



## PARAGON PARK (NEW ACCESS)






## WHITLEY SOUTH (WITH SIGNALISATION AT STONELEIGH JUNCTION)






### WHITLEY SOUTH



## WHITLEY SOUTH

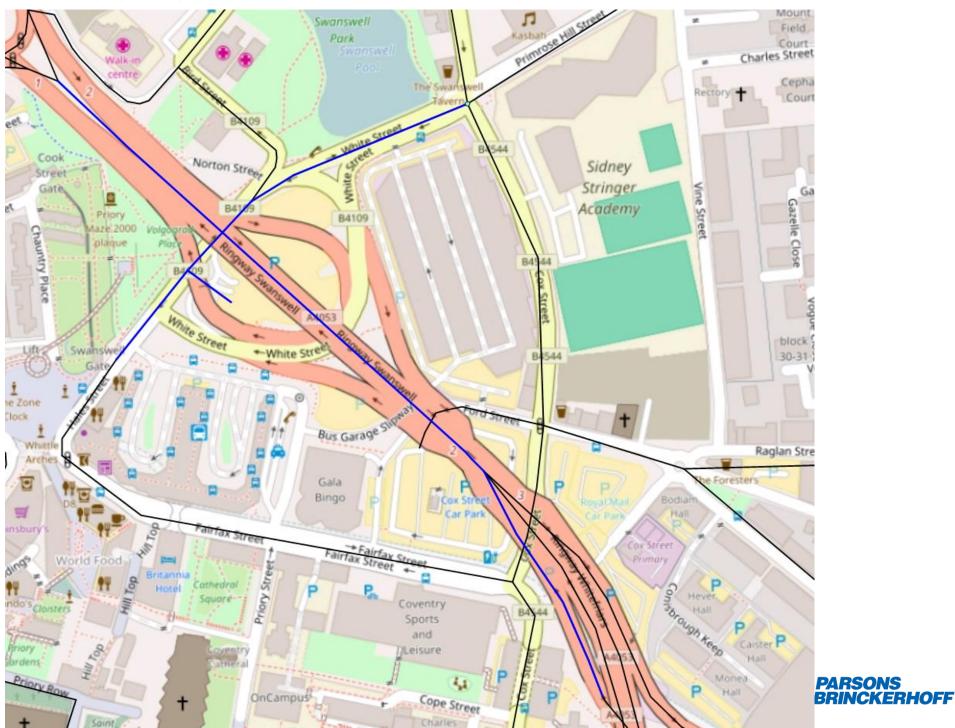


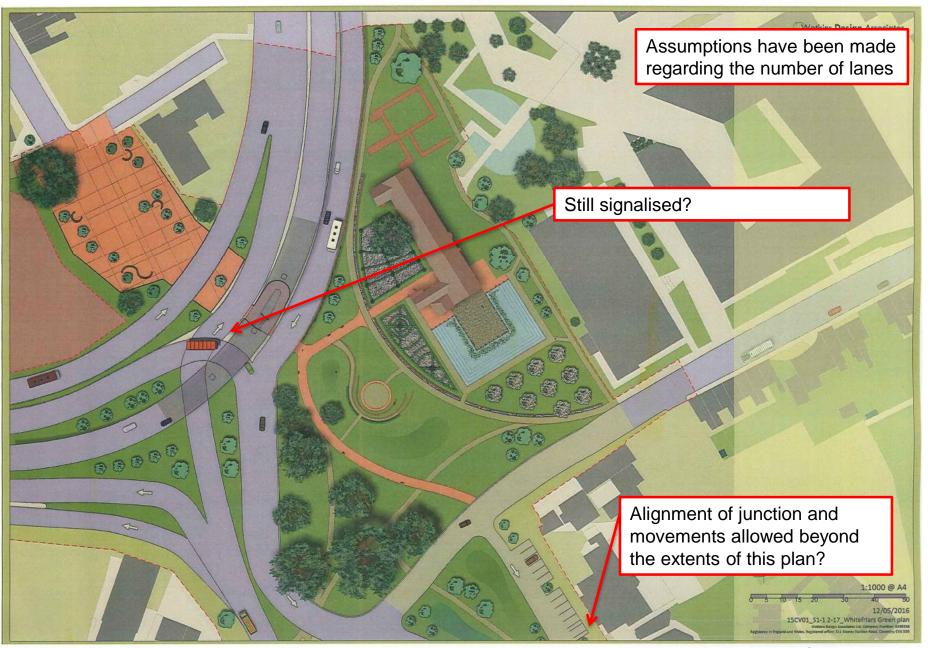


## HIGHWAY SCHEMES INDICATED TO BE INCLUDED BY CCC

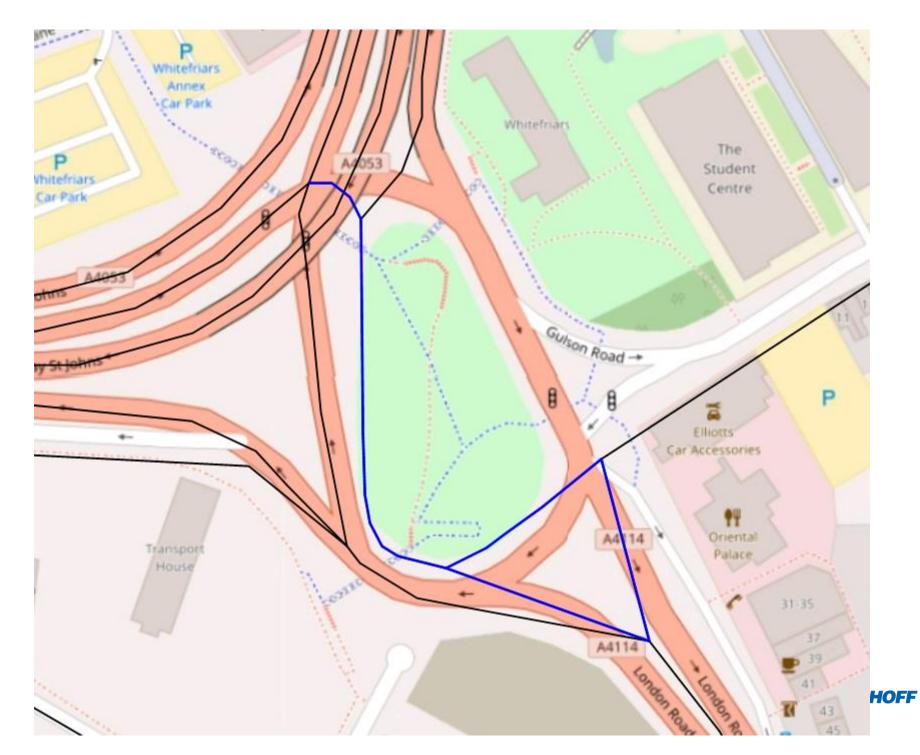
- → A46 Link Road: Stoneleigh Junction Phase One
- → IRR Junction 1
- → IRR Junction 2
- → IRR Junction 4





## A46 LINK ROAD: STONELEIGH JUNCTION PHASE ONE







#### **IRR JUNCTION 1** Bishopsgate (construction) National Probation 1. Pedestrianised space to top of Bishop St complete with high quality paving, tree planting and new street furniture to create a sense of arrival into the city centre and to further enhance connectivity to the canal 2. Reduced Bishop St/Lamb St/Tower St Junction to enable better pedestrian movement along Bishop St. 3. Widened footways along Bishop St plus high quality paving and tree planting. Re-landscaped end of Silver St to improve setting of the Grade I listed Grammar School (shown in PUBLIC REALM PHASE 2 BISHOP STREET PARSONS BRINCKERHOFF CONCEPT DESIGN DRAWING









